Nonnegative Matrix and Tensor Factorizations

Nonnegative Matrix and Tensor Factorizations
Author: Andrzej Cichocki
Publisher: John Wiley & Sons
Total Pages: 500
Release: 2009-07-10
Genre: Science
ISBN: 9780470747285

Download Nonnegative Matrix and Tensor Factorizations Book in PDF, Epub and Kindle

This book provides a broad survey of models and efficient algorithms for Nonnegative Matrix Factorization (NMF). This includes NMF’s various extensions and modifications, especially Nonnegative Tensor Factorizations (NTF) and Nonnegative Tucker Decompositions (NTD). NMF/NTF and their extensions are increasingly used as tools in signal and image processing, and data analysis, having garnered interest due to their capability to provide new insights and relevant information about the complex latent relationships in experimental data sets. It is suggested that NMF can provide meaningful components with physical interpretations; for example, in bioinformatics, NMF and its extensions have been successfully applied to gene expression, sequence analysis, the functional characterization of genes, clustering and text mining. As such, the authors focus on the algorithms that are most useful in practice, looking at the fastest, most robust, and suitable for large-scale models. Key features: Acts as a single source reference guide to NMF, collating information that is widely dispersed in current literature, including the authors’ own recently developed techniques in the subject area. Uses generalized cost functions such as Bregman, Alpha and Beta divergences, to present practical implementations of several types of robust algorithms, in particular Multiplicative, Alternating Least Squares, Projected Gradient and Quasi Newton algorithms. Provides a comparative analysis of the different methods in order to identify approximation error and complexity. Includes pseudo codes and optimized MATLAB source codes for almost all algorithms presented in the book. The increasing interest in nonnegative matrix and tensor factorizations, as well as decompositions and sparse representation of data, will ensure that this book is essential reading for engineers, scientists, researchers, industry practitioners and graduate students across signal and image processing; neuroscience; data mining and data analysis; computer science; bioinformatics; speech processing; biomedical engineering; and multimedia.

Nonnegative Matrix and Tensor Factorizations, Least Squares Problems, and Applications

Nonnegative Matrix and Tensor Factorizations, Least Squares Problems, and Applications
Author: Jingu Kim
Publisher:
Total Pages:
Release: 2011
Genre: Computer science
ISBN:

Download Nonnegative Matrix and Tensor Factorizations, Least Squares Problems, and Applications Book in PDF, Epub and Kindle

Nonnegative matrix factorization (NMF) is a useful dimension reduction method that has been investigated and applied in various areas. NMF is considered for high-dimensional data in which each element has a nonnegative value, and it provides a low-rank approximation formed by factors whose elements are also nonnegative. The nonnegativity constraints imposed on the low-rank factors not only enable natural interpretation but also reveal the hidden structure of data. Extending the benefits of NMF to multidimensional arrays, nonnegative tensor factorization (NTF) has been shown to be successful in analyzing complicated data sets. Despite the success, NMF and NTF have been actively developed only in the recent decade, and algorithmic strategies for computing NMF and NTF have not been fully studied. In this thesis, computational challenges regarding NMF, NTF, and related least squares problems are addressed.

Matrix and Tensor Factorization Techniques for Recommender Systems

Matrix and Tensor Factorization Techniques for Recommender Systems
Author: Panagiotis Symeonidis
Publisher: Springer
Total Pages: 101
Release: 2017-01-29
Genre: Computers
ISBN: 3319413570

Download Matrix and Tensor Factorization Techniques for Recommender Systems Book in PDF, Epub and Kindle

This book presents the algorithms used to provide recommendations by exploiting matrix factorization and tensor decomposition techniques. It highlights well-known decomposition methods for recommender systems, such as Singular Value Decomposition (SVD), UV-decomposition, Non-negative Matrix Factorization (NMF), etc. and describes in detail the pros and cons of each method for matrices and tensors. This book provides a detailed theoretical mathematical background of matrix/tensor factorization techniques and a step-by-step analysis of each method on the basis of an integrated toy example that runs throughout all its chapters and helps the reader to understand the key differences among methods. It also contains two chapters, where different matrix and tensor methods are compared experimentally on real data sets, such as Epinions, GeoSocialRec, Last.fm, BibSonomy, etc. and provides further insights into the advantages and disadvantages of each method. The book offers a rich blend of theory and practice, making it suitable for students, researchers and practitioners interested in both recommenders and factorization methods. Lecturers can also use it for classes on data mining, recommender systems and dimensionality reduction methods.

Nonnegative Matrix Factorization

Nonnegative Matrix Factorization
Author: Nicolas Gillis
Publisher: SIAM
Total Pages: 376
Release: 2020-12-18
Genre: Mathematics
ISBN: 1611976413

Download Nonnegative Matrix Factorization Book in PDF, Epub and Kindle

Nonnegative matrix factorization (NMF) in its modern form has become a standard tool in the analysis of high-dimensional data sets. This book provides a comprehensive and up-to-date account of the most important aspects of the NMF problem and is the first to detail its theoretical aspects, including geometric interpretation, nonnegative rank, complexity, and uniqueness. It explains why understanding these theoretical insights is key to using this computational tool effectively and meaningfully. Nonnegative Matrix Factorization is accessible to a wide audience and is ideal for anyone interested in the workings of NMF. It discusses some new results on the nonnegative rank and the identifiability of NMF and makes available MATLAB codes for readers to run the numerical examples presented in the book. Graduate students starting to work on NMF and researchers interested in better understanding the NMF problem and how they can use it will find this book useful. It can be used in advanced undergraduate and graduate-level courses on numerical linear algebra and on advanced topics in numerical linear algebra and requires only a basic knowledge of linear algebra and optimization.

An All-at-once Approach to Nonnegative Tensor Factorizations

An All-at-once Approach to Nonnegative Tensor Factorizations
Author:
Publisher:
Total Pages:
Release: 2008
Genre:
ISBN:

Download An All-at-once Approach to Nonnegative Tensor Factorizations Book in PDF, Epub and Kindle

Tensors can be viewed as multilinear arrays or generalizations of the notion of matrices. Tensor decompositions have applications in various fields such as psychometrics, signal processing, numerical linear algebra and data mining. When the data are nonnegative, the nonnegative tensor factorization (NTF) better reflects the underlying structure. With NTF it is possible to extract information from a given dataset and construct lower-dimensional bases that capture the main features of the set and concisely describe the original data. Nonnegative tensor factorizations are commonly computed as the solution of a nonlinear bound-constrained optimization problem. Some inherent difficulties must be taken into consideration in order to achieve good solutions. Many existing methods for computing NTF optimize over each of the factors separately; the resulting algorithms are often slow to converge and difficult to control. We propose an all-at-once approach to computing NTF. Our method optimizes over all factors simultaneously and combines two regularization strategies to ensure that the factors in the decomposition remain bounded and equilibrated in norm. We present numerical experiments that illustrate the effectiveness of our approach. We also give an example of digital-inpainting, where our algorithm is employed to construct a basis that can be used to restore digital images.

Independent Component Analysis and Signal Separation

Independent Component Analysis and Signal Separation
Author: Tulay Adali
Publisher: Springer
Total Pages: 803
Release: 2009-03-16
Genre: Computers
ISBN: 3642005993

Download Independent Component Analysis and Signal Separation Book in PDF, Epub and Kindle

This book constitutes the refereed proceedings of the 8th International Conference on Independent Component Analysis and Signal Separation, ICA 2009, held in Paraty, Brazil, in March 2009. The 97 revised papers presented were carefully reviewed and selected from 137 submissions. The papers are organized in topical sections on theory, algorithms and architectures, biomedical applications, image processing, speech and audio processing, other applications, as well as a special session on evaluation.

Algorithmic Aspects of Machine Learning

Algorithmic Aspects of Machine Learning
Author: Ankur Moitra
Publisher: Cambridge University Press
Total Pages: 161
Release: 2018-09-27
Genre: Computers
ISBN: 1107184584

Download Algorithmic Aspects of Machine Learning Book in PDF, Epub and Kindle

Introduces cutting-edge research on machine learning theory and practice, providing an accessible, modern algorithmic toolkit.

Handbook of Blind Source Separation

Handbook of Blind Source Separation
Author: Pierre Comon
Publisher: Academic Press
Total Pages: 856
Release: 2010-02-17
Genre: Technology & Engineering
ISBN: 0080884946

Download Handbook of Blind Source Separation Book in PDF, Epub and Kindle

Edited by the people who were forerunners in creating the field, together with contributions from 34 leading international experts, this handbook provides the definitive reference on Blind Source Separation, giving a broad and comprehensive description of all the core principles and methods, numerical algorithms and major applications in the fields of telecommunications, biomedical engineering and audio, acoustic and speech processing. Going beyond a machine learning perspective, the book reflects recent results in signal processing and numerical analysis, and includes topics such as optimization criteria, mathematical tools, the design of numerical algorithms, convolutive mixtures, and time frequency approaches. This Handbook is an ideal reference for university researchers, R&D engineers and graduates wishing to learn the core principles, methods, algorithms, and applications of Blind Source Separation. Covers the principles and major techniques and methods in one book Edited by the pioneers in the field with contributions from 34 of the world’s experts Describes the main existing numerical algorithms and gives practical advice on their design Covers the latest cutting edge topics: second order methods; algebraic identification of under-determined mixtures, time-frequency methods, Bayesian approaches, blind identification under non negativity approaches, semi-blind methods for communications Shows the applications of the methods to key application areas such as telecommunications, biomedical engineering, speech, acoustic, audio and music processing, while also giving a general method for developing applications

Large-Scale Scientific Computing

Large-Scale Scientific Computing
Author: Ivan Lirkov
Publisher: Springer
Total Pages: 636
Release: 2020-02-14
Genre: Computers
ISBN: 9783030410315

Download Large-Scale Scientific Computing Book in PDF, Epub and Kindle

This book constitutes revised papers from the 12th International Conference on Large-Scale Scientific Computing, LSSC 2019, held in Sozopol, Bulgaria, in June 2019. The 70 papers presented in this volume were carefully reviewed and selected from 81 submissions. The book also contains two invited talks. The papers were organized in topical sections named as follows: control and optimization of dynamical systems; meshfree and particle methods; fractional diffusion problems: numerical methods, algorithms and applications; pore scale flow and transport simulation; tensors based algorithms and structures in optimization and applications; HPC and big data: algorithms and applications; large-scale models: numerical methods, parallel computations and applications; monte carlo algorithms: innovative applications in conjunctions with other methods; application of metaheuristics to large-scale problems; large scale machine learning: multiscale algorithms and performance guarantees; and contributed papers.