Nonequilibrium Statistical Physics of Small Systems

Nonequilibrium Statistical Physics of Small Systems
Author: Rainer Klages
Publisher: John Wiley & Sons
Total Pages: 402
Release: 2013-03-15
Genre: Science
ISBN: 3527658726

Download Nonequilibrium Statistical Physics of Small Systems Book in PDF, Epub and Kindle

This book offers a comprehensive picture of nonequilibrium phenomena in nanoscale systems. Written by internationally recognized experts in the field, this book strikes a balance between theory and experiment, and includes in-depth introductions to nonequilibrium fluctuation relations, nonlinear dynamics and transport, single molecule experiments, and molecular diffusion in nanopores. The authors explore the application of these concepts to nano- and biosystems by cross-linking key methods and ideas from nonequilibrium statistical physics, thermodynamics, stochastic theory, and dynamical systems. By providing an up-to-date survey of small systems physics, the text serves as both a valuable reference for experienced researchers and as an ideal starting point for graduate-level students entering this newly emerging research field.

Thermodynamics and Statistical Mechanics of Small Systems

Thermodynamics and Statistical Mechanics of Small Systems
Author: Andrea Puglisi
Publisher: MDPI
Total Pages: 335
Release: 2018-09-04
Genre:
ISBN: 3038970573

Download Thermodynamics and Statistical Mechanics of Small Systems Book in PDF, Epub and Kindle

This book is a printed edition of the Special Issue "Thermodynamics and Statistical Mechanics of Small Systems" that was published in Entropy

Nonequilibrium Statistical Mechanics

Nonequilibrium Statistical Mechanics
Author: Robert Zwanzig
Publisher: Oxford University Press, USA
Total Pages: 233
Release: 2001-05-17
Genre: Science
ISBN: 0195140184

Download Nonequilibrium Statistical Mechanics Book in PDF, Epub and Kindle

This is a presentation of the main ideas and methods of modern nonequilibrium statistical mechanics. It is the perfect introduction for anyone in chemistry or physics who needs an update or background in this time-dependent field. Topics covered include fluctuation-dissipation theorem; linear response theory; time correlation functions, and projection operators. Theoretical models are illustrated by real-world examples and numerous applications such as chemical reaction rates and spectral line shapes are covered. The mathematical treatments are detailed and easily understandable and the appendices include useful mathematical methods like the Laplace transforms, Gaussian random variables and phenomenological transport equations.

Non-Equilibrium Statistical Mechanics

Non-Equilibrium Statistical Mechanics
Author: James H. Luscombe
Publisher: CRC Press
Total Pages: 257
Release: 2024-09-23
Genre: Science
ISBN: 1040118798

Download Non-Equilibrium Statistical Mechanics Book in PDF, Epub and Kindle

Statistical mechanics provides a framework for relating the properties of macroscopic systems (large collections of atoms, such as in a solid) to the microscopic properties of its parts. However, what happens when macroscopic systems are not in thermal equilibrium, where time is not only a relevant variable, but also essential? That is the province of nonequilibrium statistical mechanics – there are many ways for systems to be out of equilibrium! The subject is governed by fewer general principles than equilibrium statistical mechanics and consists of a number of different approaches for describing nonequilibrium systems. Financial markets are analyzed using methods of nonequilibrium statistical physics, such as the Fokker-Planck equation. Any system of sufficient complexity can be analyzed using the methods of nonequilibrium statistical mechanics. The Boltzmann equation is used frequently in the analysis of systems out of thermal equilibrium, from electron transport in semiconductors to modeling the early Universe following the Big Bang. This book provides an accessible yet very thorough introduction to nonequilibrium statistical mechanics, building on the author's years of teaching experience. Covering a broad range of advanced, extension topics, it can be used to support advanced courses on statistical mechanics, or as a supplementary text for core courses in this field. Key Features: Features a clear, accessible writing style which enables the author to take a sophisticated approach to the subject, but in a way that is suitable for advanced undergraduate students and above Presents foundations of probability theory and stochastic processes and treats principles and basic methods of kinetic theory and time correlation functions Accompanied by separate volumes on thermodynamics and equilibrium statistical mechanics, which can be used in conjunction with this book

Thermodynamics of Information Processing in Small Systems

Thermodynamics of Information Processing in Small Systems
Author: Takahiro Sagawa
Publisher: Springer Science & Business Media
Total Pages: 126
Release: 2012-09-14
Genre: Science
ISBN: 4431541683

Download Thermodynamics of Information Processing in Small Systems Book in PDF, Epub and Kindle

This thesis presents a general theory of nonequilibrium thermodynamics for information processing. Ever since Maxwell's demon was proposed in the nineteenth century, the relationship between thermodynamics and information has attracted much attention because it concerns the foundation of the second law of thermodynamics. From the modern point of view, Maxwell's demon is formulated as an information processing device that performs measurement and feedback at the level of thermal fluctuations. By unifying information theory, measurement theory, and the recently developed theory of nonequilibrium statistical mechanics, the author has constructed a theory of "information thermodynamics," in which information contents and thermodynamic variables are treated on an equal footing. In particular, the maximum work that can be extracted by the demon and the minimum work that is needed for measurement and information erasure by the demon has been determined. Additionally, generalizations of nonequilibrium relations such as a Jarzynski equality for classical stochastic systems in the presence of feedback control have been derived. One of the generalized equalities has recently been verified experimentally by using sub-micron colloidal particles. The results obtained serve as fundamental principles for information processing in small thermodynamic systems, and are applicable to nanomachines and nanodevices.

Non-Equilibrium Statistical Mechanics

Non-Equilibrium Statistical Mechanics
Author: Ilya Prigogine
Publisher: Courier Dover Publications
Total Pages: 337
Release: 2017-03-17
Genre: Science
ISBN: 0486815552

Download Non-Equilibrium Statistical Mechanics Book in PDF, Epub and Kindle

Groundbreaking monograph by Nobel Prize winner for researchers and graduate students covers Liouville equation, anharmonic solids, Brownian motion, weakly coupled gases, scattering theory and short-range forces, general kinetic equations, more. 1962 edition.

Equilibrium and Nonequilibrium Statistical Mechanics: Principles and Concepts

Equilibrium and Nonequilibrium Statistical Mechanics: Principles and Concepts
Author: Avijit Lahiri
Publisher: Avijit Lahiri
Total Pages: 1623
Release: 2023-10-14
Genre: Science
ISBN:

Download Equilibrium and Nonequilibrium Statistical Mechanics: Principles and Concepts Book in PDF, Epub and Kindle

Equilibrium and Non-equilibrium Statistical Mechanics is a source-book of great value to college and university students embarking upon a serious reading of Statistical Mechanics, and is likely to be of interest to teachers of the subject as well. Written in a lucid style, the book builds up the subject from basics, and goes on to quite advanced and modern developments, giving an overview of the entire framework of statistical mechanics. The equilibrium ensembles of quantum and classical statistical mechanics are introduced at length, indicating their relation to equilibrium states of thermodynamic systems, and the applications of these ensembles in the case of the ideal gas are worked out, pointing out the relevance of the ideal gas in respect of a number of real-life systems. The application to interacting systems is then taken up by way of explaining the virial expansion of a dilute gas. The book then deals with a number of foundational questions relating to the existence of the thermodynamic limit and to the equivalence of the various equilibrium ensembles. The relevance of the thermodynamic limit in explaining phase transitions is indicated with reference to the Yang-Lee theory and the Kirkwood-Salsburg equations for correlation functions. The statistical mechanics of interacting systems is then taken up again, with reference to the 1D and 2D Ising model and to the spin glass model of disordered systems. Applications of the Mean field theory are worked out, explaining the Landau-Ginzburg theory, which is then followed by the renormalization group approach to phase transitions. Interacting systems in the quantum context are referred to, addressing separately the cases of interacting bosons and fermions. The case of the weakly interacting bosons is explained in details, while the Landau theory for fermi liquids is also explained in outline. The book then goes on to a modern but readable account of non-equilibrium statistical mechanics, explaining the link with irreversible thermodynamcs. After an exposition of the Boltzmann equations and the linear response theory illustrated with reference to the hydrodynamic model, it explains the statistical mechanics of reduced systems, in the context of a number of reduction schemes. This is followed by an account of the relevance of dynamical chaos in laying down the foundations of classical statistical mechanics, where the SRB distributon is introduced in the context of non-equilibrium steady states, with reference to which the principle of minimum entropy production is explaned. A number of basic fluctuation relations are then worked out, pointing out their relation to irreversible thermodynamics. Finally, the book explains the relevance of quantum chaos in addressing foundational issues in quantum statistical mechanics, beginning with Berry’s conjecture and then going on to an exposition of the eigenstate thermalization (ETH) hypothesis, indicating how the latter is relevant in explaining the processes of equilibriation and thermalization in thermodynamic systems and their sub-systems.

Non-equilibrium Statistical Physics with Application to Disordered Systems

Non-equilibrium Statistical Physics with Application to Disordered Systems
Author: Manuel Osvaldo Cáceres
Publisher: Springer
Total Pages: 568
Release: 2017-03-07
Genre: Science
ISBN: 3319515535

Download Non-equilibrium Statistical Physics with Application to Disordered Systems Book in PDF, Epub and Kindle

This textbook is the result of the enhancement of several courses on non-equilibrium statistics, stochastic processes, stochastic differential equations, anomalous diffusion and disorder. The target audience includes students of physics, mathematics, biology, chemistry, and engineering at undergraduate and graduate level with a grasp of the basic elements of mathematics and physics of the fourth year of a typical undergraduate course. The little-known physical and mathematical concepts are described in sections and specific exercises throughout the text, as well as in appendices. Physical-mathematical motivation is the main driving force for the development of this text. It presents the academic topics of probability theory and stochastic processes as well as new educational aspects in the presentation of non-equilibrium statistical theory and stochastic differential equations.. In particular it discusses the problem of irreversibility in that context and the dynamics of Fokker-Planck. An introduction on fluctuations around metastable and unstable points are given. It also describes relaxation theory of non-stationary Markov periodic in time systems. The theory of finite and infinite transport in disordered networks, with a discussion of the issue of anomalous diffusion is introduced. Further, it provides the basis for establishing the relationship between quantum aspects of the theory of linear response and the calculation of diffusion coefficients in amorphous systems.

Statistical Physics of Non Equilibrium Quantum Phenomena

Statistical Physics of Non Equilibrium Quantum Phenomena
Author: Yves Pomeau
Publisher: Springer Nature
Total Pages: 227
Release: 2019-11-29
Genre: Science
ISBN: 3030343944

Download Statistical Physics of Non Equilibrium Quantum Phenomena Book in PDF, Epub and Kindle

This book provides an introduction to topics in non-equilibrium quantum statistical physics for both mathematicians and theoretical physicists. The first part introduces a kinetic equation, of Kolmogorov type, which is needed to describe an isolated atom (actually, in experiments, an ion) under the effect of a classical pumping electromagnetic field which keeps the atom in its excited state(s) together with the random emission of fluorescence photons which put it back into its ground state. The quantum kinetic theory developed in the second part is an extension of Boltzmann's classical (non-quantum) kinetic theory of a dilute gas of quantum bosons. This is the source of many interesting fundamental questions, particularly because, if the temperature is low enough, such a gas is known to have at equilibrium a transition, the Bose–Einstein transition, where a finite portion of the particles stay in the quantum ground state. An important question considered is how a Bose gas condensate develops in time if its energy is initially low enough.

Statistical Mechanics for Athermal Fluctuation

Statistical Mechanics for Athermal Fluctuation
Author: Kiyoshi Kanazawa
Publisher: Springer
Total Pages: 231
Release: 2017-11-20
Genre: Science
ISBN: 981106332X

Download Statistical Mechanics for Athermal Fluctuation Book in PDF, Epub and Kindle

The author investigates athermal fluctuation from the viewpoints of statistical mechanics in this thesis. Stochastic methods are theoretically very powerful in describing fluctuation of thermodynamic quantities in small systems on the level of a single trajectory and have been recently developed on the basis of stochastic thermodynamics. This thesis proposes, for the first time, a systematic framework to describe athermal fluctuation, developing stochastic thermodynamics for non-Gaussian processes, while thermal fluctuations are mainly addressed from the viewpoint of Gaussian stochastic processes in most of the conventional studies. First, the book provides an elementary introduction to the stochastic processes and stochastic thermodynamics. The author derives a Langevin-like equation with non-Gaussian noise as a minimal stochastic model for athermal systems, and its analytical solution by developing systematic expansions is shown as the main result. Furthermore, the a uthor shows a thermodynamic framework for such non-Gaussian fluctuations, and studies some thermodynamics phenomena, i.e. heat conduction and energy pumping, which shows distinct characteristics from conventional thermodynamics. The theory introduced in the book would be a systematic foundation to describe dynamics of athermal fluctuation quantitatively and to analyze their thermodynamic properties on the basis of stochastic methods.