Neural Control of Renal Function

Neural Control of Renal Function
Author: Ulla Kopp
Publisher: Morgan & Claypool Publishers
Total Pages: 99
Release: 2011
Genre: Medical
ISBN: 1615042318

Download Neural Control of Renal Function Book in PDF, Epub and Kindle

The kidney is innervated with efferent sympathetic nerve fibers reaching the renal vasculature, the tubules, the juxtaglomerular granular cells, and the renal pelvic wall. The renal sensory nerves are mainly found in the renal pelvic wall. Increases in efferent renal sympathetic nerve activity reduce renal blood flow and urinary sodium excretion by activation of α1-adrenoceptors and increase renin secretion rate by activation of β1-adrenoceptors. In response to normal physiological stimulation, changes in efferent renal sympathetic nerve activity contribute importantly to homeostatic regulation of sodium and water balance. The renal mechanosensory nerves are activated by stretch of the renal pelvic tissue produced by increases in renal pelvic tissue of a magnitude that may occur during increased urine flow rate. Activation of the sensory nerves elicits an inhibitory renorenal reflex response consisting of decreases in efferent renal sympathetic nerve activity leading to natriuresis. Increasing efferent sympathetic nerve activity increases afferent renal nerve activity which, in turn, decreases efferent renal sympathetic nerve activity by activation of the renorenal reflexes. Thus, activation of the afferent renal nerves buffers changes in efferent renal sympathetic nerve activity in the overall goal of maintaining sodium balance. In pathological conditions of sodium retention, impairment of the inhibitory renorenal reflexes contributes to an inappropriately increased efferent renal sympathetic nerve activity in the presence of sodium retention. In states of renal disease or injury, there is a shift from inhibitory to excitatory reflexes originating in the kidney. Studies in essential hypertensive patients have shown that renal denervation results in long-term reduction in arterial pressure, suggesting an important role for the efferent and afferent renal nerves in hypertension. Table of Contents: Part I: Efferent Renal Sympathetic Nerves / Introduction / Neuroanatomy / Neural Control of Renal Hemodynamics / Neural Control of Renal Tubular Function / Neural Control of Renin Secretion Rate / Part II: Afferent Renal Sensory Nerves / Introduction / Neuroanatomy / Renorenal Reflexes / Mechanisms Involved in the Activation of Afferent Renal Sensory Nerves / Part III: Pathophysiological States / Efferent Renal Sympathetic Nerves / Afferent Renal Sensory Nerves / Conclusions / References

Neural Control of Renal Function

Neural Control of Renal Function
Author: Ulla Kopp
Publisher: Biota Publishing
Total Pages: 98
Release: 2011-05-01
Genre: Science
ISBN: 1615042326

Download Neural Control of Renal Function Book in PDF, Epub and Kindle

The kidney is innervated with efferent sympathetic nerve fibers reaching the renal vasculature, the tubules, the juxtaglomerular granular cells, and the renal pelvic wall. The renal sensory nerves are mainly found in the renal pelvic wall. Increases in efferent renal sympathetic nerve activity reduce renal blood flow and urinary sodium excretion by activation of α1-adrenoceptors and increase renin secretion rate by activation of β1-adrenoceptors. In response to normal physiological stimulation, changes in efferent renal sympathetic nerve activity contribute importantly to homeostatic regulation of sodium and water balance. The renal mechanosensory nerves are activated by stretch of the renal pelvic tissue produced by increases in renal pelvic pressure of a magnitude that may occur during increased urine flow rate. Activation of the sensory nerves elicits an inhibitory renorenal reflex response consisting of decreases in efferent renal sympathetic nerve activity leading to natriuresis. Increasing efferent sympathetic nerve activity increases afferent renal nerve activity which, in turn, decreases efferent renal sympathetic nerve activity by activation of the renorenal reflexes. Thus, activation of the afferent renal nerves buffers changes in efferent renal sympathetic nerve activity in the overall goal of maintaining sodium balance. In pathological conditions of sodium retention, impairment of the inhibitory renorenal reflexes contributes to an inappropriately increased efferent renal sympathetic nerve activity in the presence of sodium retention. In states of renal disease or injury, there is a shift from inhibitory to excitatory reflexes originating in the kidney. Studies in essential hypertensive patients have shown that renal denervation results in long-term reduction in arterial pressure, suggesting an important role for the efferent and afferent renal nerves in hypertension. Table of Contents: Part I: Efferent Renal Sympathetic Nerves / Introduction / Neuroanatomy / Neural Control of Renal Hemodynamics / Neural Control of Renal Tubular Function / Neural Control of Renin Secretion Rate / Part II: Afferent Renal Sensory Nerves / Introduction / Neuroanatomy / Renorenal Reflexes / Mechanisms Involved in the Activation of Afferent Renal Sensory Nerves / Part III: Pathophysiological States / Efferent Renal Sympathetic Nerves / Afferent Renal Sensory Nerves / Conclusions / References

Neural Control of Renal Function, Second Edition

Neural Control of Renal Function, Second Edition
Author: Ulla C. Kopp
Publisher: Biota Publishing
Total Pages: 122
Release: 2018-07-17
Genre: Science
ISBN: 161504776X

Download Neural Control of Renal Function, Second Edition Book in PDF, Epub and Kindle

The kidney is innervated with efferent sympathetic nerve fibers reaching the renal vasculature, the tubules, the juxtaglomerular granular cells, and the renal pelvic wall. The renal sensory nerves are mainly found in the renal pelvic wall. Increases in efferent renal sympathetic nerve activity reduce renal blood flow and urinary sodium excretion by activation of α1-adrenoceptors and increase renin secretion rate by activation of β1-adrenoceptors. In response to normal physiological stimulation, changes in efferent renal sympathetic nerve activity contribute importantly to homeostatic regulation of sodium and water balance. The renal mechanosensory nerves are activated by stretch of the renal pelvic tissue produced by increases in renal pelvic tissue of a magnitude that may occur during increased urine flow rate. Under normal conditions, the renal mechanosensory nerves activated by stretch of the sensory nerves elicits an inhibitory renorenal reflex response consisting of decreases in efferent renal sympathetic nerve activity leading to natriuresis. Increasing efferent sympathetic nerve activity increases afferent renal nerve activity which, in turn, decreases efferent renal sympathetic nerve activity by activation of the renorenal reflexes. Thus, activation of the afferent renal nerves buffers changes in efferent renal sympathetic nerve activity in the overall goal of maintaining sodium balance. In pathological conditions of sodium retention, impairment of the inhibitory renorenal reflexes contributes to an inappropriately increased efferent renal sympathetic nerve activity in the presence of sodium retention. In states of renal disease or injury, there is a shift from inhibitory to excitatory reflexes originating in the kidney. Studies in essential hypertensive patients have shown that renal denervation results in long-term reduction in arterial pressure, suggesting an important role for the efferent and afferent renal nerves in hypertension.

Neural Control of Renal Function, Second Edition

Neural Control of Renal Function, Second Edition
Author: Ulla C. Kopp
Publisher: Morgan & Claypool
Total Pages: 106
Release: 2018-07-17
Genre: Science
ISBN: 9781615047772

Download Neural Control of Renal Function, Second Edition Book in PDF, Epub and Kindle

The kidney is innervated with efferent sympathetic nerve fibers reaching the renal vasculature, the tubules, the juxtaglomerular granular cells, and the renal pelvic wall. The renal sensory nerves are mainly found in the renal pelvic wall. Increases in efferent renal sympathetic nerve activity reduce renal blood flow and urinary sodium excretion by activation of α1-adrenoceptors and increase renin secretion rate by activation of β1-adrenoceptors. In response to normal physiological stimulation, changes in efferent renal sympathetic nerve activity contribute importantly to homeostatic regulation of sodium and water balance. The renal mechanosensory nerves are activated by stretch of the renal pelvic tissue produced by increases in renal pelvic tissue of a magnitude that may occur during increased urine flow rate. Under normal conditions, the renal mechanosensory nerves activated by stretch of the sensory nerves elicits an inhibitory renorenal reflex response consisting of decreases in efferent renal sympathetic nerve activity leading to natriuresis. Increasing efferent sympathetic nerve activity increases afferent renal nerve activity which, in turn, decreases efferent renal sympathetic nerve activity by activation of the renorenal reflexes. Thus, activation of the afferent renal nerves buffers changes in efferent renal sympathetic nerve activity in the overall goal of maintaining sodium balance. In pathological conditions of sodium retention, impairment of the inhibitory renorenal reflexes contributes to an inappropriately increased efferent renal sympathetic nerve activity in the presence of sodium retention. In states of renal disease or injury, there is a shift from inhibitory to excitatory reflexes originating in the kidney. Studies in essential hypertensive patients have shown that renal denervation results in long-term reduction in arterial pressure, suggesting an important role for the efferent and afferent renal nerves in hypertension.

Reflex Control of the Circulation

Reflex Control of the Circulation
Author: Irving H. Zucker
Publisher: CRC Press
Total Pages: 1088
Release: 2020-02-03
Genre: Medical
ISBN: 1000725383

Download Reflex Control of the Circulation Book in PDF, Epub and Kindle

Reflex Control of the Circulation presents an interdisciplinary discussion of concepts in the reflex control of circulation. This volume describes aspects of autonomic receptor physiology, central pathways of reflex control, the electrophysiology of cardiovascular afferents, the interaction between reflexes, the autonomic control of regional blood flows, the autonomic control of fluid and electrolyte balance, and neurohumoral control of the circulation through normal and pathological states (e.g., hypertension, congestive heart failure). In addition, the regulation of regional blood flow during exercise and developmental aspects of reflex control are examined. Any researcher interested in the autonomic system and its role in circulation will find this book fascinating reading.

Oxford Textbook of Critical Care

Oxford Textbook of Critical Care
Author: Webb
Publisher: Oxford University Press
Total Pages: 1961
Release: 2020-01-10
Genre: Medical
ISBN: 0198855435

Download Oxford Textbook of Critical Care Book in PDF, Epub and Kindle

Now in paperback, the second edition of the Oxford Textbook of Critical Care is a comprehensive multi-disciplinary text covering all aspects of adult intensive care management. Uniquely this text takes a problem-orientated approach providing a key resource for daily clinical issues in the intensive care unit. The text is organized into short topics allowing readers to rapidly access authoritative information on specific clinical problems. Each topic refers to basic physiological principles and provides up-to-date treatment advice supported by references to the most vital literature. Where international differences exist in clinical practice, authors cover alternative views. Key messages summarise each topic in order to aid quick review and decision making. Edited and written by an international group of recognized experts from many disciplines, the second edition of the Oxford Textbook of Critical Careprovides an up-to-date reference that is relevant for intensive care units and emergency departments globally. This volume is the definitive text for all health care providers, including physicians, nurses, respiratory therapists, and other allied health professionals who take care of critically ill patients.

The Cerebral Circulation

The Cerebral Circulation
Author: Marilyn J. Cipolla
Publisher: Biota Publishing
Total Pages: 82
Release: 2016-07-28
Genre: Medical
ISBN: 1615047239

Download The Cerebral Circulation Book in PDF, Epub and Kindle

This e-book will review special features of the cerebral circulation and how they contribute to the physiology of the brain. It describes structural and functional properties of the cerebral circulation that are unique to the brain, an organ with high metabolic demands and the need for tight water and ion homeostasis. Autoregulation is pronounced in the brain, with myogenic, metabolic and neurogenic mechanisms contributing to maintain relatively constant blood flow during both increases and decreases in pressure. In addition, unlike peripheral organs where the majority of vascular resistance resides in small arteries and arterioles, large extracranial and intracranial arteries contribute significantly to vascular resistance in the brain. The prominent role of large arteries in cerebrovascular resistance helps maintain blood flow and protect downstream vessels during changes in perfusion pressure. The cerebral endothelium is also unique in that its barrier properties are in some way more like epithelium than endothelium in the periphery. The cerebral endothelium, known as the blood-brain barrier, has specialized tight junctions that do not allow ions to pass freely and has very low hydraulic conductivity and transcellular transport. This special configuration modifies Starling's forces in the brain microcirculation such that ions retained in the vascular lumen oppose water movement due to hydrostatic pressure. Tight water regulation is necessary in the brain because it has limited capacity for expansion within the skull. Increased intracranial pressure due to vasogenic edema can cause severe neurologic complications and death.

Basic Physiology

Basic Physiology
Author: P.D. Sturkie
Publisher: Springer Science & Business Media
Total Pages: 453
Release: 2012-12-06
Genre: Medical
ISBN: 1461380812

Download Basic Physiology Book in PDF, Epub and Kindle

Basic Physiology is an introduction to vertebrate physiology, stressing human physiology at the organ level, and includ ing requisite anatomy integrated with function. One chapter deals solely with topographic anatomy in atlas form and microscopic anatomy of the principal tissues of the body. Additional chapters cover cellular and general physiology; nervous system, muscle; blood and tissue fluids, heart and circulation; respiration, digestion and absorption; intermedi ary metabolism; energy metabolism; temperature regulation; nutrition; kidney; endocrinology, including hypophysis, re production; thyroids, parathyroids, adrenals and pancreas. All concepts are emphasized and well illustrated, and con troversial material is omitted. It is written at a level suited to undergraduate students who have had introductory courses in biology, chemistry, and mathematics, and to more ad vanced students who wish to review the basic concepts of physiology. This volume should be especially useful as a text for de partments of biology, zoology, nursing, health, and agricul tural sciences that offer courses in vertebrate and human physiology. Basic Physiology is written by seven subject matter special ists who have considerable experience in teaching their specialty to undergraduates studying physiology and biology.

Neurourology

Neurourology
Author: Limin Liao
Publisher: Springer
Total Pages: 583
Release: 2019-03-11
Genre: Medical
ISBN: 9401775095

Download Neurourology Book in PDF, Epub and Kindle

This book introduce neurourology as an emerging interdisciplinary area that covers the basic and clinical studies of the neural control on the normal lower urinary tract and the lower/upper urinary tract dysfunction due to neuropathy disorders. It systematically describes all aspects of neurourology from the epidemiology of the neurogenic bladder; to the pathology and pathophysiology of the lower urinary tract; to the diagnosis and treatment of the neurogenic bladder by conservative therapies or surgeries. This book provides a useful resource for medical doctors, nurses and students in the field of neurourological conditions. All the topics are written by internationally recognized specialists in their field.