Near-wall Turbulent Flows

Near-wall Turbulent Flows
Author: Ronald M. C. So
Publisher: Elsevier Publishing Company
Total Pages: 1072
Release: 1993
Genre: Mathematics
ISBN:

Download Near-wall Turbulent Flows Book in PDF, Epub and Kindle

Knowledge of near-wall turbulence from experimental, theoretical and numerical sources is accumulating at an ever increasing rate. An overview of the latest important developments is reported and discussed in depth in this volume with the goal of stimulating closer dialogue between researchers in all areas of near-wall turbulence. The full text of 95 contributed papers cover a broad range of topics in near-wall turbulent flows that includes boundary layers, coherent structures, drag reduction, experimental methods, high speed flows, numerical simulations, transition and turbulent modeling. The innovativeness of the contributions demonstrates that near-wall turbulence remains a vital and dynamically evolving field with important technological consequences for the future.

Turbulent Flows

Turbulent Flows
Author: G. Biswas
Publisher: CRC Press
Total Pages: 478
Release: 2002
Genre: Technology & Engineering
ISBN: 9780849310140

Download Turbulent Flows Book in PDF, Epub and Kindle

This book allows readers to tackle the challenges of turbulent flow problems with confidence. It covers the fundamentals of turbulence, various modeling approaches, and experimental studies. The fundamentals section includes isotropic turbulence and anistropic turbulence, turbulent flow dynamics, free shear layers, turbulent boundary layers and plumes. The modeling section focuses on topics such as eddy viscosity models, standard K-E Models, Direct Numerical Stimulation, Large Eddy Simulation, and their applications. The measurement of turbulent fluctuations experiments in isothermal and stratified turbulent flows are explored in the experimental methods section. Special topics include modeling of near wall turbulent flows, compressible turbulent flows, and more.

A Generalized Wall Function

A Generalized Wall Function
Author:
Publisher:
Total Pages: 26
Release: 1999
Genre: Fluid dynamics
ISBN:

Download A Generalized Wall Function Book in PDF, Epub and Kindle

The Origin of Turbulence in Near-Wall Flows

The Origin of Turbulence in Near-Wall Flows
Author: A.V. Boiko
Publisher: Springer Science & Business Media
Total Pages: 273
Release: 2013-03-09
Genre: Technology & Engineering
ISBN: 3662047659

Download The Origin of Turbulence in Near-Wall Flows Book in PDF, Epub and Kindle

The Origin of Species Charles Darwin The origin of turbulence in fluids is a long-standing problem and has been the focus of research for decades due to its great importance in a variety of engineering applications. Furthermore, the study of the origin of turbulence is part of the fundamental physical problem of turbulence description and the philosophical problem of determinism and chaos. At the end of the nineteenth century, Reynolds and Rayleigh conjectured that the reason of the transition of laminar flow to the 'sinuous' state is in stability which results in amplification of wavy disturbances and breakdown of the laminar regime. Heisenberg (1924) was the founder of linear hydrody namic stability theory. The first calculations of boundary layer stability were fulfilled in pioneer works of Tollmien (1929) and Schlichting (1932, 1933). Later Taylor (1936) hypothesized that the transition to turbulence is initi ated by free-stream oscillations inducing local separations near wall. Up to the 1940s, skepticism of the stability theory predominated, in particular due to the experimental results of Dryden (1934, 1936). Only the experiments of Schubauer and Skramstad (1948) revealed the determining role of insta bility waves in the transition. Now it is well established that the transition to turbulence in shear flows at small and moderate levels of environmental disturbances occurs through development of instability waves in the initial laminar flow. In Chapter 1 we start with the fundamentals of stability theory, employing results of the early studies and recent advances.

Self-sustaining Mechanisms of Wall Turbulence

Self-sustaining Mechanisms of Wall Turbulence
Author: Ronald Lee Panton
Publisher: Computational Mechanics
Total Pages: 448
Release: 1997
Genre: Science
ISBN:

Download Self-sustaining Mechanisms of Wall Turbulence Book in PDF, Epub and Kindle

Why is wall turbulence self-sustaining? In this book well-regarded researchers not only discuss what they know and believe, but also speculate on ideas that still require numerical or experimental testing and verification. An initial brief history of boundary layer structure research is followed by chapters on experimental information and specific topics within the subject. There are then sections on computational aspects.

Modeling Complex Turbulent Flows

Modeling Complex Turbulent Flows
Author: Manuel D. Salas
Publisher: Springer Science & Business Media
Total Pages: 385
Release: 2012-12-06
Genre: Science
ISBN: 9401147248

Download Modeling Complex Turbulent Flows Book in PDF, Epub and Kindle

Turbulence modeling both addresses a fundamental problem in physics, 'the last great unsolved problem of classical physics,' and has far-reaching importance in the solution of difficult practical problems from aeronautical engineering to dynamic meteorology. However, the growth of supercom puter facilities has recently caused an apparent shift in the focus of tur bulence research from modeling to direct numerical simulation (DNS) and large eddy simulation (LES). This shift in emphasis comes at a time when claims are being made in the world around us that scientific analysis itself will shortly be transformed or replaced by a more powerful 'paradigm' based on massive computations and sophisticated visualization. Although this viewpoint has not lacked ar ticulate and influential advocates, these claims can at best only be judged premature. After all, as one computational researcher lamented, 'the com puter only does what I tell it to do, and not what I want it to do. ' In turbulence research, the initial speculation that computational meth ods would replace not only model-based computations but even experimen tal measurements, have not come close to fulfillment. It is becoming clear that computational methods and model development are equal partners in turbulence research: DNS and LES remain valuable tools for suggesting and validating models, while turbulence models continue to be the preferred tool for practical computations. We believed that a symposium which would reaffirm the practical and scientific importance of turbulence modeling was both necessary and timely.

The Structure of Turbulent Shear Flow

The Structure of Turbulent Shear Flow
Author: A. A. R. Townsend
Publisher: Cambridge University Press
Total Pages: 450
Release: 1976
Genre: Mathematics
ISBN: 9780521298193

Download The Structure of Turbulent Shear Flow Book in PDF, Epub and Kindle

Develops a physical theory from the mass of experimental results, with revisions to reflect advances of recent years.

Turbulent Flows

Turbulent Flows
Author: Jean Piquet
Publisher: Springer Science & Business Media
Total Pages: 778
Release: 2001-03-26
Genre: Technology & Engineering
ISBN: 9783540654117

Download Turbulent Flows Book in PDF, Epub and Kindle

obtained are still severely limited to low Reynolds numbers (about only one decade better than direct numerical simulations), and the interpretation of such calculations for complex, curved geometries is still unclear. It is evident that a lot of work (and a very significant increase in available computing power) is required before such methods can be adopted in daily's engineering practice. I hope to l"Cport on all these topics in a near future. The book is divided into six chapters, each· chapter in subchapters, sections and subsections. The first part is introduced by Chapter 1 which summarizes the equations of fluid mechanies, it is developed in C~apters 2 to 4 devoted to the construction of turbulence models. What has been called "engineering methods" is considered in Chapter 2 where the Reynolds averaged equations al"C established and the closure problem studied (§1-3). A first detailed study of homogeneous turbulent flows follows (§4). It includes a review of available experimental data and their modeling. The eddy viscosity concept is analyzed in §5 with the l"Csulting ~alar-transport equation models such as the famous K-e model. Reynolds stl"Css models (Chapter 4) require a preliminary consideration of two-point turbulence concepts which are developed in Chapter 3 devoted to homogeneous turbulence. We review the two-point moments of velocity fields and their spectral transforms (§ 1), their general dynamics (§2) with the particular case of homogeneous, isotropie turbulence (§3) whel"C the so-called Kolmogorov's assumptions are discussed at length.