Navy Ship Propulsion Technologies

Navy Ship Propulsion Technologies
Author: Ronald O'Rourke
Publisher:
Total Pages: 60
Release: 2006
Genre: Marine engines
ISBN:

Download Navy Ship Propulsion Technologies Book in PDF, Epub and Kindle

"General strategies for reducing the Navy's dependence on oil for its ships include reducing energy use on Navy ships; shifting to alternative hydrocarbon fuels; shifting to a greater reliance on nuclear propulsion; and making use of sail and solar power."--p. [2].

Navy Ship Propulsion Technologies

Navy Ship Propulsion Technologies
Author:
Publisher:
Total Pages: 0
Release: 2006
Genre:
ISBN:

Download Navy Ship Propulsion Technologies Book in PDF, Epub and Kindle

General strategies for reducing the Navy's dependence on oil for its ships include reducing energy use on Navy ships; shifting to alternative hydrocarbon fuels; shifting to more reliance on nuclear propulsion; and using sail and solar power. Reducing energy use on Navy ships. A 2001 study concluded that fitting a Navy cruiser with more energy-efficient electrical equipment could reduce the ship's fuel use by 10% to 25%. The Navy has installed fuel-saving bulbous bows and stern flaps on many of its ships. Ship fuel use could be reduced by shifting to advanced turbine designs such as an intercooled recuperated (ICR) turbine. Shifting to integrated electric-drive propulsion can reduce a ship's fuel use by 10% to 25%; some Navy ships are to use integrated electric drive. Fuel cell technology, if successfully developed, could reduce Navy ship fuel use substantially. Alternative hydrocarbon fuels. Potential alternative hydrocarbon fuels for Navy ships include biodiesel and liquid hydrocarbon fuels made from coal using the Fischer-Tropsch (FT) process. A 2005 Naval Advisory Research (NRAC) study and a 2006 Air Force Scientific Advisory Board both discussed FT fuels. Nuclear propulsion. Oil-fueled ship types that might be shifted to nuclear propulsion include large-deck amphibious assault ships and large surface combatants (i.e., cruisers and destroyers). A 2005 "quick look" analysis by the Naval Nuclear Propulsion Program concluded that total life-cycle costs for nuclearpowered versions of these ships would equal those of oil-fueled versions when oil reaches about $70 and $178 per barrel, respectively. Sail and solar propulsion. Kite-assisted propulsion might be an option for reducing fuel use on Navy auxiliaries and DOD sealift ships. Two firms are now offering kite-assist systems to commercial ship operators. Solar power might offer some potential for augmenting other forms of shipboard power, perhaps particularly on Navy auxiliaries and DOD sealift ships. Legislative activity. Section 128 of the FY2007 defense authorization bill (H.R. 5122) states that "it is the sense of Congress that the Navy should make greater use of alternative technologies, including nuclear power, as a means of vessel propulsion for its future fleet of surface combatants." The Senate report (S.Rept. 109-292 of July 25, 2006) on the FY2007 defense appropriations bill (H.R. 5631) encourages DOD to continue exploring FT fuels and requires a report on synthetic fuels. Section 214 of the conference report (H.Rept. 109-413 of April 6, 2006) on the Coast Guard and Maritime Transportation Act of 2006 (H.R. 889) requires the Coast Guard to conduct a feasibility study on using biodiesel fuel in new and existing Coast Guard vehicles and vessels. Section 130 of the conference report (H.Rept. 109-360 of December 18, 2006) on the FY2006 defense authorization act (H.R. 1815, P.L. 109-163 of January 6, 2006) requires the Navy to submit a report by November 1, 2006, on alternative propulsion methods for surface combatants and amphibious warfare ships. This report will be updated as events warrant.

Propulsion Systems for Navy Ships and Submarines

Propulsion Systems for Navy Ships and Submarines
Author: United States Government Accountability Office
Publisher: Createspace Independent Publishing Platform
Total Pages: 34
Release: 2018-06-16
Genre:
ISBN: 9781720358893

Download Propulsion Systems for Navy Ships and Submarines Book in PDF, Epub and Kindle

Propulsion Systems for Navy Ships and Submarines

Technology for the United States Navy and Marine Corps, 2000-2035

Technology for the United States Navy and Marine Corps, 2000-2035
Author:
Publisher: National Academies
Total Pages: 356
Release: 1997
Genre: History
ISBN:

Download Technology for the United States Navy and Marine Corps, 2000-2035 Book in PDF, Epub and Kindle

The future national security environment will present the naval forces with operational challenges that can best be met through the development of military capabilities that effectively leverage rapidly advancing technologies in many areas. The panel envisions a world where the naval forces will perform missions in the future similar to those they have historically undertaken. These missions will continue to include sea control, deterrence, power projection, sea lift, and so on. The missions will be accomplished through the use of platforms (ships, submarines, aircraft, and spacecraft), weapons (guns, missiles, bombs, torpedoes, and information), manpower, materiel, tactics, and processes (acquisition, logistics, and so on.). Accordingly, the Panel on Technology attempted to identify those technologies that will be of greatest importance to the future operations of the naval forces and to project trends in their development out to the year 2035. The primary objective of the panel was to determine which are the most critical technologies for the Department of the Navy to pursue to ensure U.S. dominance in future naval operations and to determine the future trends in these technologies and their impact on Navy and Marine Corps superiority. A vision of future naval operations ensued from this effort. These technologies form the base from which products, platforms, weapons, and capabilities are built. By combining multiple technologies with their future attributes, new systems and subsystems can be envisioned. Technology for the United States Navy and Marine Corps, 2000-2035 Becoming a 21st-Century Force: Volume 2: Technology indentifies those technologies that are unique to the naval forces and whose development the Department of the Navy clearly must fund, as well as commercially dominated technologies that the panel believes the Navy and Marine Corps must learn to adapt as quickly as possible to naval applications. Since the development of many of the critical technologies is becoming global in nature, some consideration is given to foreign capabilities and trends as a way to assess potential adversaries' capabilities. Finally, the panel assessed the current state of the science and technology (S&T) establishment and processes within the Department of the Navy and makes recommendations that would improve the efficiency and effectiveness of this vital area. The panel's findings and recommendations are presented in this report.

Lightweight Propulsion Systems for Advanced Naval Ship Applications. Part I. System Studies

Lightweight Propulsion Systems for Advanced Naval Ship Applications. Part I. System Studies
Author: Simion C. Kuo
Publisher:
Total Pages: 286
Release: 1977
Genre:
ISBN:

Download Lightweight Propulsion Systems for Advanced Naval Ship Applications. Part I. System Studies Book in PDF, Epub and Kindle

This report presents the results of system studies as part of a comprehensive study program to evaluate the technological and economic feasibility of utilizing open- and closed-cycle gas turbines integrated with fossil or nuclear heat sources for providing advanced lightweight propulsion power for future Navy capital ship applications. The level of technology considered is that judged by the Contractor to be available during the 1990's. Naval ship types which could benefit from implementing lightweight propulsion systems were selected and characterized, and performance and weight characteristics for selected propulsion machinery components were estimated. Turbomachinery technologies applicable to naval ship propulsion were reviewed, and future advances in crucial technical areas were projected. Eight reference installed power levels between 40,000 and 300,000 shp applicable to the ship types considered were selected. Basic propulsion system arrangements compatible with component capabilities were identified. From the huge number of possible combinations of propulsion system components, arrangements, and power levels for different ship types, a manageable number of practical cases were selected by use of a matrix screening process and subjected to detailed study.

Technology for the United States Navy and Marine Corps, 2000-2035: Becoming a 21st-Century Force

Technology for the United States Navy and Marine Corps, 2000-2035: Becoming a 21st-Century Force
Author: National Research Council
Publisher: National Academies Press
Total Pages: 353
Release: 1997-12-19
Genre: Technology & Engineering
ISBN: 0309083982

Download Technology for the United States Navy and Marine Corps, 2000-2035: Becoming a 21st-Century Force Book in PDF, Epub and Kindle

The future national security environment will present the naval forces with operational challenges that can best be met through the development of military capabilities that effectively leverage rapidly advancing technologies in many areas. The panel envisions a world where the naval forces will perform missions in the future similar to those they have historically undertaken. These missions will continue to include sea control, deterrence, power projection, sea lift, and so on. The missions will be accomplished through the use of platforms (ships, submarines, aircraft, and spacecraft), weapons (guns, missiles, bombs, torpedoes, and information), manpower, materiel, tactics, and processes (acquisition, logistics,and so on.). Accordingly, the Panel on Technology attempted to identify those technologies that will be of greatest importance to the future operations of the naval forces and to project trends in their development out to the year 2035. The primary objective of the panel was to determine which are the most critical technologies for the Department of the Navy to pursue to ensure U.S. dominance in future naval operations and to determine the future trends in these technologies and their impact on Navy and Marine Corps superiority. A vision of future naval operations ensued from this effort. These technologies form the base from which products, platforms, weapons, and capabilities are built. By combining multiple technologies with their future attributes, new systems and subsystems can be envisioned. Technology for the United States Navy and Marine Corps, 2000-2035 Becoming a 21st-Century Force:Volume 2: Technology indentifies those technologies that are unique to the naval forces and whose development the Department of the Navy clearly must fund, as well as commercially dominated technologies that the panel believes the Navy and Marine Corps must learn to adapt as quickly as possible to naval applications. Since the development of many of the critical technologies is becoming global in nature, some consideration is given to foreign capabilities and trends as a way to assess potential adversaries' capabilities. Finally, the panel assessed the current state of the science and technology (S&T) establishment and processes within the Department of the Navy and makes recommendations that would improve the efficiency and effectiveness of this vital area. The panel's findings and recommendations are presented in this report.

Electric-Drive Propulsion for U.S. Navy Ships

Electric-Drive Propulsion for U.S. Navy Ships
Author:
Publisher:
Total Pages: 0
Release: 2000
Genre:
ISBN:

Download Electric-Drive Propulsion for U.S. Navy Ships Book in PDF, Epub and Kindle

The Navy in January 2000 selected electric-drive propulsion technology for use on its planned next-generation DD-21 land-attack destroyer and is considering it for use on other kinds of Navy ships as well. Electric drive poses issues for Congress concerning its costs, benefits and risks, and how the technology should be integrated into the DD-21 program or other ship-acquisition programs. Several foreign countries are developing or using electric drive in commercial or naval ships. The U.S. Navy's electric-drive development effort centers on the Integrated Power System (IPS) program. Several private-sector firms in the United States are now pursuing electric drive for the U.S. Navy market. Electric drive offers significant anticipated benefits for U.S. Navy ships in terms of reducing ship life-cycle cost, increasing ship stealthiness, payload, survivability, and power available for non-propulsion uses, and taking advantage of a strong electrical power technological and industrial base. Potential disadvantages include higher nearterm costs, increased technical risk, increased system complexity, and less efficiency in full-power operations. The current scarcity of precise and systematic estimates of the costs and benefits of electric drive makes it difficult for policymakers to assess the relative cost-effectiveness of differing technical approaches to achieving electric drive. Some of the risks involved in developing electric-drive technology have been mitigated by the successful development of electric-drive technology for commercial ships; estimates of the amount of remaining risk vary. The Navy has stated that developing common electric-drive components is feasible for several kinds of Navy ships and that pursuing electric drive technology in the form of a common family of components could have advantages for the Navy. The potential savings associated with a common system are difficult to estimate, but could be substantial. The concept of developing a common system or family of components poses issues for policymakers concerning the extent of commonality across electric-drive-equipped Navy ships and the use of competition in the development and procurement of electric-drive technology. Much of the debate over electric drive concerns electric motors. The five basic types in question - synchronous motors, induction motors, permanent magnet motors, superconducting synchronous motors, and superconducting homopolar motors - differ in terms of their technological maturity, power-density, and potential applicability to different Navy ship types. The Navy's decision to use electric drive on the DD-21 raises several potential issues concerning the acquisition strategy for the ship. Electric drive could be installed on Virginia (SSN-774) class submarines procured in FY2010, according to the Navy. Other candidates for electric drive include the Navy's planned TADC(X) auxiliary dry cargo ships, the Navy's planned joint command and control (JCC[X]) ships, the second through fifth LHA replacement ships, future aircraft carriers, and possibly the new cutters to be procured under the Coast Guard Deepwater project.

Shipboard Propulsion, Power Electronics, and Ocean Energy

Shipboard Propulsion, Power Electronics, and Ocean Energy
Author: Mukund R. Patel
Publisher: CRC Press
Total Pages: 392
Release: 2012-02-17
Genre: Science
ISBN: 1439888507

Download Shipboard Propulsion, Power Electronics, and Ocean Energy Book in PDF, Epub and Kindle

Shipboard Propulsion, Power Electronics, and Ocean Energy fills the need for a comprehensive book that covers modern shipboard propulsion and the power electronics and ocean energy technologies that drive it. With a breadth and depth not found in other books, it examines the power electronics systems for ship propulsion and for extracting ocean energy, which are mirror images of each other. Comprised of sixteen chapters, the book is divided into four parts: Power Electronics and Motor Drives explains basic power electronics converters and variable-frequency drives, cooling methods, and quality of power Electric Propulsion Technologies focuses on the electric propulsion of ships using recently developed permanent magnet and superconducting motors, as well as hybrid propulsion using fuel cell, photovoltaic, and wind power Renewable Ocean Energy Technologies explores renewable ocean energy from waves, marine currents, and offshore wind farms System Integration Aspects discusses two aspects—energy storage and system reliability—that are essential for any large-scale power system This timely book evolved from the author’s 30 years of work experience at General Electric, Lockheed Martin, and Westinghouse Electric and 15 years of teaching at the U.S. Merchant Marine Academy. As a textbook, it is ideal for an elective course at marine and naval academies with engineering programs. It is also a valuable reference for commercial and military shipbuilders, port operators, renewable ocean energy developers, classification societies, machinery and equipment manufacturers, researchers, and others interested in modern shipboard power and propulsion systems. The information provided herein does not necessarily represent the view of the U.S. Merchant Marine Academy or the U.S. Department of Transportation. This book is a companion to Shipboard Electrical Power Systems (CRC Press, 2011), by the same author.