Energy Conversion in Natural and Artificial Photosynthesis

Energy Conversion in Natural and Artificial Photosynthesis
Author: Katharina Brinkert
Publisher: Springer
Total Pages: 127
Release: 2019-04-23
Genre: Science
ISBN: 9783030085919

Download Energy Conversion in Natural and Artificial Photosynthesis Book in PDF, Epub and Kindle

This book discusses the basic principles and processes of solar energy conversion in natural photosynthesis. It then directly compares them with recent developments and concepts currently being pursued in artificial photosynthetic systems that are capable of utilizing sunlight to convert carbon dioxide and water into a chemical fuel. In this regard, the main focus is on photoelectrochemical cells, in which semiconducting photoanodes and -cathodes modified with (electro-) catalysts are used to oxidize water, produce hydrogen and reduce carbon dioxide in a monolithic device. The fundamental photochemical and photophysical processes involved are presented and discussed, along with protection mechanisms and efficiency calculations for both natural and artificial photosynthesis. In turn, key parameters that are crucial for the efficient operation of natural photosynthesis are identified. Lastly, their validity and applicability in the design of artificial solar-driven water-splitting systems are examined.

Natural and Artificial Photosynthesis

Natural and Artificial Photosynthesis
Author: Reza Razeghifard
Publisher: John Wiley & Sons
Total Pages: 372
Release: 2013-08-23
Genre: Science
ISBN: 1118659759

Download Natural and Artificial Photosynthesis Book in PDF, Epub and Kindle

This technical book explores current and future applications of solar power as an unlimited source of energy that earth receives every day. Photosynthetic organisms have learned to utilize this abundant source of energy by converting it into high-energy biochemical compounds. Inspired by the efficient conversion of solar energy into an electron flow, attempts have been made to construct artificial photosynthetic systems capable of establishing a charge separation state for generating electricity or driving chemical reactions. Another important aspect of photosynthesis is the CO2 fixation and the production of high energy compounds. Photosynthesis can produce biomass using solar energy while reducing the CO2 level in air. Biomass can be converted into biofuels such as biodiesel and bioethanol. Under certain conditions, photosynthetic organisms can also produce hydrogen gas which is one of the cleanest sources of energy.

Artificial Photosynthesis

Artificial Photosynthesis
Author: Anthony F. Collings
Publisher: John Wiley & Sons
Total Pages: 339
Release: 2007-09-24
Genre: Science
ISBN: 3527606912

Download Artificial Photosynthesis Book in PDF, Epub and Kindle

Since the events crucial to plant photosynthesis are now known in molecular detail, this process is no longer nature's secret, but can for the first time be mimicked by technology. Broad in its scope, this book spans the basics of biological photosynthesis right up to the current approaches for its technical exploitation, making it the most complete resource on artificial photosynthesis ever published. The contents draw on the expertise of the Australian Artificial Photosynthesis Network, currently the world's largest coordinated research effort to develop effective photosynthesis technology. This is further backed by expert contributions from around the globe, providing an authoritative overview of current research worldwide.

Current challenges in photosynthesis: From natural to artificial

Current challenges in photosynthesis: From natural to artificial
Author: Harvey J.M. Hou
Publisher: Frontiers E-books
Total Pages: 103
Release: 2014-10-03
Genre: Botany
ISBN: 2889192865

Download Current challenges in photosynthesis: From natural to artificial Book in PDF, Epub and Kindle

Jules Verne (1828-1905), author of Around the World in Eighty Days (1873) and Journey to the Center of the Earth (1864), wrote in 1875 “I believe that water will one day be used as a fuel, because the hydrogen and oxygen which constitute it, used separately or together, will furnish an inexhaustible source of heat and light. I therefore believe that, when coal (oil) deposits are oxidised, we will heat ourselves by means of water. Water is the fuel of the future” Solar energy is the only renewable energy source that has sufficient capacity for the global energy need; it is the only one that can address the issues of energy crisis and global climate change. A vast amount of solar energy is harvested and stored via photosynthesis in plants, algae, and cyanobacteria since over 3 billion years. Today, it is estimated that photosynthesis produces more than 100 billion tons of dry biomass annually, which would be equivalent to a hundred times the weight of the total human population on our planet at the present time, and equal to a global energy storage rate of about 100 TW. The solar power is the most abundant source of renewable energy, and oxygenic photosynthesis uses this energy to power the planet using the amazing reaction of water splitting. During water splitting, driven ultimately by sunlight, oxygen is released into the atmosphere, and this, along with food production by photosynthesis, supports life on our earth. The other product of water oxidation is “hydrogen” (proton and electron). This ‘hydrogen’ is not normally released into the atmosphere as hydrogen gas but combined with carbon dioxide to make high energy containing organic molecules. When we burn fuels we combine these organic molecules with oxygen. The design of new solar energy systems must adhere to the same principle as that of natural photosynthesis. For us to manipulate it to our benefit, it is imperative that we completely understand the basic processes of natural photosynthesis, and chemical conversion, such as light harvesting, excitation energy transfer, electron transfer, ion transport, and carbon fixation. Equally important, we must exploit application of this knowledge to the development of fully synthetic and/or hybrid devices. Understanding of photosynthetic reactions is not only a satisfying intellectual pursuit, but it is important for improving agricultural yields and for developing new solar technologies. Today, we have considerable knowledge of the working of photosynthesis and its photosystems, including the water oxidation reaction. Recent advances towards the understanding of the structure and the mechanism of the natural photosynthetic systems are being made at the molecular level. To mimic natural photosynthesis, inorganic chemists, organic chemists, electrochemists, material scientists, biochemists, biophysicists, and plant biologists must work together and only then significant progress in harnessing energy via “artificial photosynthesis” will be possible. This Research Topic provides recent advances of our understanding of photosynthesis, gives to our readers recent information on photosynthesis research, and summarizes the characteristics of the natural system from the standpoint of what we could learn from it to produce an efficient artificial system, i.e., from the natural to the artificial. This topic is intended to include exciting breakthroughs, possible limitations, and open questions in the frontiers in photosynthesis research.

Energy Conversion in Natural and Artificial Photosynthesis

Energy Conversion in Natural and Artificial Photosynthesis
Author: Katharina Brinkert
Publisher: Springer
Total Pages: 127
Release: 2018-03-16
Genre: Technology & Engineering
ISBN: 331977980X

Download Energy Conversion in Natural and Artificial Photosynthesis Book in PDF, Epub and Kindle

This book discusses the basic principles and processes of solar energy conversion in natural photosynthesis. It then directly compares them with recent developments and concepts currently being pursued in artificial photosynthetic systems that are capable of utilizing sunlight to convert carbon dioxide and water into a chemical fuel. In this regard, the main focus is on photoelectrochemical cells, in which semiconducting photoanodes and -cathodes modified with (electro-) catalysts are used to oxidize water, produce hydrogen and reduce carbon dioxide in a monolithic device. The fundamental photochemical and photophysical processes involved are presented and discussed, along with protection mechanisms and efficiency calculations for both natural and artificial photosynthesis. In turn, key parameters that are crucial for the efficient operation of natural photosynthesis are identified. Lastly, their validity and applicability in the design of artificial solar-driven water-splitting systems are examined.

Solar-to-Chemical Conversion

Solar-to-Chemical Conversion
Author: Hongqi Sun
Publisher: John Wiley & Sons
Total Pages: 480
Release: 2021-04-29
Genre: Science
ISBN: 3527825088

Download Solar-to-Chemical Conversion Book in PDF, Epub and Kindle

This comprehensive book systematically covers the fundamentals in solar energy conversion to chemicals, either fuels or chemical products. It includes natural photosynthesis with emphasis on artificial processes for solar energy conversion and utilization. The chemical processes of solar energy conversion via homogeneous and/or heterogeneous photocatalysis has been described with the mechanistic insights. It also consists of reaction systems toward a variety of applications, such as water splitting for hydrogen or oxygen evolution, photocatalytic CO2 reduction to fuels, and light driven N2 fixation, etc. This unique book offers the readers a broad view of solar energy utilization based on chemical processes and their perspectives for future sustainability.

Photosynthesis

Photosynthesis
Author: Dmitry Shevela
Publisher: World Scientific Publishing
Total Pages: 204
Release: 2018-11-09
Genre: Science
ISBN: 9813223138

Download Photosynthesis Book in PDF, Epub and Kindle

Photosynthesis has been an important field of research for more than a century, but the present concerns about energy, environment and climate have greatly intensified interest in and research on this topic. Research has progressed rapidly in recent years, and this book is an interesting read for an audience who is concerned with various ways of harnessing solar energy. Our understanding of photosynthesis can now be said to have reached encyclopedic dimensions. There have been, in the past, many good books at various levels. Our book is expected to fulfill the needs of advanced undergraduate and beginning graduate students in branches of biology, biochemistry, biophysics, and bioengineering because photosynthesis is the basis of future advances in producing more food, more biomass, more fuel, and new chemicals for our expanding global human population. Further, the basics of photosynthesis are and will be used not only for the above, but in artificial photosynthesis, an important emerging field where chemists, researchers and engineers of solar energy systems will play a major role.

Photosynthesis: Structures, Mechanisms, and Applications

Photosynthesis: Structures, Mechanisms, and Applications
Author: Harvey J.M. Hou
Publisher: Springer
Total Pages: 424
Release: 2017-05-16
Genre: Science
ISBN: 3319488732

Download Photosynthesis: Structures, Mechanisms, and Applications Book in PDF, Epub and Kindle

To address the environmental, socioeconomic, and geopolitical issues associated with increasing global human energy consumption, technologies for utilizing renewable carbon-free or carbon-neutral energy sources must be identified and developed. Among renewable sources, solar energy is quite promising as it alone is sufficient to meet global human demands well into the foreseeable future. However, it is diffuse and diurnal. Thus effective strategies must be developed for its capture, conversion and storage. In this context, photosynthesis provides a paradigm for large-scale deployment. Photosynthesis occurs in plants, algae, and cyanobacteria and has evolved over 3 billion years. The process of photosynthesis currently produces more than 100 billion tons of dry biomass annually, which equates to a global energy storage rate of ~100 TW. Recently, detailed structural information on the natural photosynthetic systems has been acquired at the molecular level, providing a foundation for comprehensive functional studies of the photosynthetic process. Likewise, sophisticated spectroscopic techniques have revealed important mechanistic details. Such accomplishments have made it possible for scientists and engineers to construct artificial systems for solar energy transduction that are inspired by their biological counterparts. The book contains articles written by experts and world leaders in their respective fields and summarizes the exciting breakthroughs toward understanding the structures and mechanisms of the photosynthetic apparatus as well as efforts toward developing revolutionary new energy conversion technologies. The topics/chapters will be organized in terms of the natural sequence of events occurring in the process of photosynthesis, while keeping a higher-order organization of structure and mechanism as well as the notion that biology can inspire human technologies. For example, the topic of light harvesting, will be followed by charge separation at reaction centers, followed by charge stabilization, followed by chemical reactions, followed by protection mechanisms, followed by other more specialized topics and finally ending with artificial systems and looking forward. As shown in the table of contents (TOC), the book includes and integrates topics on the structures and mechanisms of photosynthesis, and provides relevant information on applications to bioenergy and solar energy transduction.

System-Materials Nanoarchitectonics

System-Materials Nanoarchitectonics
Author: Yutaka Wakayama
Publisher: Springer Nature
Total Pages: 334
Release: 2022-01-03
Genre: Technology & Engineering
ISBN: 443156912X

Download System-Materials Nanoarchitectonics Book in PDF, Epub and Kindle

This book is the first publication to widely introduce the contributions of nanoarchitectonics to the development of functional materials and systems. The book opens up pathways to novel nanotechnology based on bottom-up techniques. In fields of nanotechnology, theoretical and practical limitations are expected in the bottom-up nanofabrication process. Instead, some supramolecular processes for nano- and microstructure formation including molecular recognition, self-assembly, and template synthesis have gained great attention as novel key technologies to break through expected limitations in current nanotechnology. This volume describes future images of nanotechnology and related materials and device science as well as practical applications for energy and biotechnology. Readers including specialists, non-specialists, graduate students, and undergraduate students can focus on the parts of the book that interest and concern them most. Target fields include materials chemistry, organic chemistry, physical chemistry, nanotechnology, and even biotechnology.

Atomic and Nano Scale Materials for Advanced Energy Conversion, 2 Volumes

Atomic and Nano Scale Materials for Advanced Energy Conversion, 2 Volumes
Author: Zongyou Yin
Publisher: John Wiley & Sons
Total Pages: 887
Release: 2022-04-18
Genre: Technology & Engineering
ISBN: 3527348921

Download Atomic and Nano Scale Materials for Advanced Energy Conversion, 2 Volumes Book in PDF, Epub and Kindle

Atomic and Nano Scale Materials for Advanced Energy Conversion Discover the latest advancements in energy conversion technologies used to develop modern sustainable energy techniques In Atomic and Nano Scale Materials for Advanced Energy Conversion, expert interdisciplinary researcher Dr. Zongyou Yin delivers a comprehensive overview of nano-to-atomic scale materials science, the development of advanced electrochemical, photochemical, photoelectrochemical, and photovoltaic energy conversion strategies, and the applications for sustainable water splitting and other technologies. The book offers readers cutting-edge information of two-dimensional nano, mixed-dimensional nano, nano rare earth, clusters, and single atoms. It constructively evaluates emerging nano-to-atomic scale energy conversion technologies for academic research and development (R&D) researchers and industrial technique consultants and engineers. The author sets out a systematic analysis of recent energy-conversion science, covering topics like adaptable manufacturing of Van der Waals heterojunctions, mixed-dimensional junctions, tandem structures, and superlattices. He also discusses function-oriented engineering in polymorphic phases, photon absorption, excitons-charges conversion, non-noble plasmonics, and solid-liquid-gas interactions. Readers will also benefit from: A thorough introduction to emerging nanomaterials for energy conversion, including electrochemical, photochemical, photoelectrochemical, and photovoltaic energy conversion An exploration of clusters for energy conversion, including electrochemical, photochemical, and photoelectrochemical clusters Practical discussions of single atoms for energy conversion in electrochemical, photochemical, and photoelectrochemical energy conversion technologies A thorough analysis of future perspectives and directions in advanced energy conversion technology Perfect for materials scientists, photochemists, electrochemists, and inorganic chemists, Atomic and Nano Scale Materials for Advanced Energy Conversion is also a must-read resource for catalytic chemists interested in the intersection of advanced chemistry and physics in energy conversion technologies.