Multiscale Modeling of Dislocation and Grain Boundary Mechanics in Small Scale Metals

Multiscale Modeling of Dislocation and Grain Boundary Mechanics in Small Scale Metals
Author: Jamie Gravell
Publisher:
Total Pages: 0
Release: 2021
Genre: Dislocations in metals
ISBN:

Download Multiscale Modeling of Dislocation and Grain Boundary Mechanics in Small Scale Metals Book in PDF, Epub and Kindle

Metals are of great importance for structural applications due to their high yield strength and fracture toughness. In recent years, efforts have been undertaken to further improve these properties, accelerated by advances in materials research and manufacturing processes. The conventional strategy to achieve high strength is to reduce the average grain size, but this is inevitably followed by the loss of ductility. Deformation mechanisms for plastic flow and ductility are largely dependent on microscopic defects such as dislocations, grain boundaries (GBs), and triple junctions (TJs). It is necessary to obtain a fundamental understanding of the correlation between defect mechanics and macroscopic properties across a variety of time and length scales so as to overcome the strength-ductility trade-off. With this motivation, a computational and theoretical approach has been taken to investigate the complex interplay between defects and macroscopic material response. In the first part of this dissertation (Chapters 2-3), dislocation mechanics within single crystals are examined to understand the role of sample size, crystallographic orientation, and loading conditions on the mechanism response. The focus is drawn to the plastic deformation which occurs at the mesoscale, wherefrom material properties are determined. Chapter 2 reports on DD simulations conducted to examine plastic deformation in single crystalline Cu micropillars subjected to two types of combined loading conditions: tension after torsion and torsion after tension. These combined loadings are then compared with simple tension and pure torsion, respectively. In metallic materials, the activation of one slip system increases the flow strength of other slip systems, which is a phenomenon known as latent hardening. This latent hardening behavior has been understood by the “forest hardening” mechanism arising from mutual dislocation interactions at the continuum length scale. As the size of a sample decreases to the submicron scale, the interactions between dislocations become increasingly sparse, so plastic deformation is instead governed mainly by dislocation sources. We find that there exists a transition from latent hardening to latent softening in intermediately-sized 600 nm samples undergoing the combined tension after torsion loading. The systematic computational and theoretical model described here suggests explosive multiplication causes dislocation density to greatly increase, giving rise to latent softening in those micropillars under tension after torsion. At the continuum length scale, mechanical properties of metals show relatively weak orientation dependence; however, Chapter 3 shows how strong anisotropic behaviors are exhibited as the size of sample decreases to micron and nanometer length scales. DD simulations are performed to investigate the orientation-dependent plasticity in submicron face-centered cubic (FCC) micropillars subjected to torsion. Accommodating results from atomistic modeling, updated surface nucleation schemes in DD models have been developed for three orientations ([001], [101], and [111]), allowing investigation of the dislocation microstructure evolution and the corresponding anisotropic mechanical response upon torsional loading and unloading. The DD simulation results show that the coaxial and hexagonal dislocation networks formed in [101]- and [111]-oriented nanopillars, respectively, exhibited excellent plastic recovery, while the rectangular dislocation network formed in the [001] crystal orientation was more stable and did not experience as much plastic recovery. Following work on isolated dislocation mechanics within a single crystal, the second part of this dissertation, Chapter 4, transitions into the exploration of defect mechanisms within bicrystals. Mechanical properties of metals such as strength and toughness are strongly correlated to complex interactions between various defects in the crystalline structure. While elementary interactions between these defects have been investigated using recent micro- and nano-characterization techniques, understanding of the detailed interaction mechanisms has hardly been obtained. To model plasticity in polycrystals at larger time and length scales, it is necessary to formulate a general guideline to predict both the interaction type (transmission or reflection) and the dislocation’s subsequent slip system after the interaction. Many criteria based on the geometric alignment of the defects have been developed to predict this phenomenon, but these have not been found to be accurate when applied to general data sets of grain boundaries (GBs). With this motivation, we conduct a systematic study using molecular dynamics (MD) models of bicrystals to analyze defect interaction process between a prismatic dislocation loop and eleven different grain boundaries of the following character: three tilt, three twist, and five mixed. Based on the MD observations, two new prediction methods are developed: the first is a new data-driven parametric score function based on the classical geometric criteria, and the second is by applying Gaussian process machine learning methods to find the probability distribution of a hidden function. The proposed methods could pave a new way to predict the unit interaction of dislocation with various GBs, which could show much higher accuracy compared to pre-existing geometric criteria. Finally, additional work on paving the way to polycrystalline modeling at the mesoscale is detailed, followed by an overall summary in Chapter 5.

Multiscale modeling of contact plasticity and nanoindentation in nanostructured FCC metals

Multiscale modeling of contact plasticity and nanoindentation in nanostructured FCC metals
Author: Virginie Dupont
Publisher:
Total Pages:
Release: 2008
Genre:
ISBN:

Download Multiscale modeling of contact plasticity and nanoindentation in nanostructured FCC metals Book in PDF, Epub and Kindle

ABSTRACT Nanocrystalline thin films are materials with a grain size less than 100 nm which are commonly used to fabricate microscale electro-mechanical devices. At such small scale, nanoindentation is the only standard experimental technique to study the mechanical properties of thin films. However, it is unclear if the continuum laws commonly used in nanoindentation analysis of polycrystalline materials are still valid for nano-grained metals. It is therefore critical to better understand the behavior of nanocrystalline materials under nanoscale contact. This dissertation summarizes the results of atomistic simulations aimed at modeling the nanoindentation of nanocrystalline metal thin films for which the grain size is smaller than the indenter diameter. The nanoindentation of aluminum thin films was first studied using the Quasicontinuum method, which is a concurrent multiscale model where regions of small gradients of deformations are represented as a continuum medium by finite elements, and regions of high gradients of deformation are fully-treated atomistically. Two embeddedatom- method potentials for aluminum were used in order to study the effect of the potential on the nanoindentation behavior. The aim is to better understand the effects of a grain boundary network on the plasticity and the underlying mechanisms from an atomistic perspective. Our results show that a grain boundary network is the primary medium of plasticity at the nanoscale, via shear banding that causes flow serration. We also show that although the dislocation mechanisms are the same, the mechanisms involving grain boundaries are different depending on the interatomic potential. In a second part, abnormal grain growth in aluminum thin films under nanoindentation is studied using both the Quasicontinuum method and parallel molecular dynamics simulations. The effects of the potential, the nature of the indenter and of its size on the grain growth under nanoindentation are investigated. Our results show that the potential used, which can be related to the purity of the material, can reduce grain growth. We also show that the size and material used for the indenter both have significant effects on grain growth. More specifically, grain growth under the indenter is found to occur via atom diffusion if the indenter is of the same material as the thin film. Finally, the sample size effects were studied using parallel molecular dynamics simulations on nickel thin films and nanowires. Single crystals with different sizes are modeled in order to investigate the effects of the free boundaries as well as of the thickness of the samples. It is shown that the yield point and the incipient plasticity mechanisms are similar for all simulations. However, the hardness of the nanowires is found to decrease with the nanowire size during nanoindentation, due to the interaction of prismatic loops and dislocations with the free boundaries. This dissertation has shed light on the plastic deformation mechanisms under nanoscale contact. The results obtained will help the scientific community gain a better understanding of the behavior of nanomaterials, which will lead to the fabrication of more reliable nanodevices.

Crystal Plasticity Finite Element Methods

Crystal Plasticity Finite Element Methods
Author: Franz Roters
Publisher: John Wiley & Sons
Total Pages: 188
Release: 2011-08-04
Genre: Technology & Engineering
ISBN: 3527642099

Download Crystal Plasticity Finite Element Methods Book in PDF, Epub and Kindle

Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.

Multiscale Modelling of Plasticity and Fracture by Means of Dislocation Mechanics

Multiscale Modelling of Plasticity and Fracture by Means of Dislocation Mechanics
Author: Peter Gumbsch
Publisher: Springer Science & Business Media
Total Pages: 401
Release: 2011-01-30
Genre: Technology & Engineering
ISBN: 3709102839

Download Multiscale Modelling of Plasticity and Fracture by Means of Dislocation Mechanics Book in PDF, Epub and Kindle

The latest state of simulation techniques to model plasticity and fracture in crystalline materials on the nano- and microscale is presented. Discrete dislocation mechanics and the neighbouring fields molecular dynamics and crystal plasticity are central parts. The physical phenomena, the theoretical basics, their mathematical description and the simulation techniques are introduced and important problems from the formation of dislocation structures to fatigue and fracture from the nano- to microscale as well as it’s impact on the macro behaviour are considered.

Computational Methods for Microstructure-Property Relationships

Computational Methods for Microstructure-Property Relationships
Author: Somnath Ghosh
Publisher: Springer Science & Business Media
Total Pages: 669
Release: 2010-11-17
Genre: Science
ISBN: 1441906436

Download Computational Methods for Microstructure-Property Relationships Book in PDF, Epub and Kindle

Computational Methods for Microstructure-Property Relationships introduces state-of-the-art advances in computational modeling approaches for materials structure-property relations. Written with an approach that recognizes the necessity of the engineering computational mechanics framework, this volume provides balanced treatment of heterogeneous materials structures within the microstructural and component scales. Encompassing both computational mechanics and computational materials science disciplines, this volume offers an analysis of the current techniques and selected topics important to industry researchers, such as deformation, creep and fatigue of primarily metallic materials. Researchers, engineers and professionals involved with predicting performance and failure of materials will find Computational Methods for Microstructure-Property Relationships a valuable reference.

Multiscale Modeling of Grain Boundary Segregation and Embrittlement in Tungsten for Mechanistic Design of Alloys for Coal Fired Plants

Multiscale Modeling of Grain Boundary Segregation and Embrittlement in Tungsten for Mechanistic Design of Alloys for Coal Fired Plants
Author:
Publisher:
Total Pages:
Release: 2013
Genre:
ISBN:

Download Multiscale Modeling of Grain Boundary Segregation and Embrittlement in Tungsten for Mechanistic Design of Alloys for Coal Fired Plants Book in PDF, Epub and Kindle

Based on a recent discovery of premelting-like grain boundary segregation in refractory metals occurring at high temperatures and/or high alloying levels, this project investigated grain boundary segregation and embrittlement in tungsten (W) based alloys. Specifically, new interfacial thermodynamic models have been developed and quantified to predict high-temperature grain boundary segregation in the W-Ni binary alloy and W-Ni-Fe, W-Ni-Ti, W-Ni-Co, W-Ni-Cr, W-Ni-Zr and W-Ni-Nb ternary alloys. The thermodynamic modeling results have been experimentally validated for selected systems. Furthermore, multiscale modeling has been conducted at continuum, atomistic and quantum-mechanical levels to link grain boundary segregation with embrittlement. In summary, this 3-year project has successfully developed a theoretical framework in combination with a multiscale modeling strategy for predicting grain boundary segregation and embrittlement in W based alloys.

Multiscale Modelling in Sheet Metal Forming

Multiscale Modelling in Sheet Metal Forming
Author: Dorel Banabic
Publisher: Springer
Total Pages: 416
Release: 2016-10-20
Genre: Technology & Engineering
ISBN: 3319440705

Download Multiscale Modelling in Sheet Metal Forming Book in PDF, Epub and Kindle

This book gives a unified presentation of the research performed in the field of multiscale modelling in sheet metal forming over the course of more than thirty years by the members of six teams from internationally acclaimed universities. The first chapter is devoted to the presentation of some recent phenomenological yield criteria (BBC 2005 and BBC 2008) developed at the CERTETA center from the Technical University of Cluj-Napoca. An overview on the crystallographic texture and plastic anisotropy is presented in Chapter 2. Chapter 3 is dedicated to multiscale modelling of plastic anisotropy. The authors describe a new hierarchical multi-scale framework that allows taking into account the evolution of plastic anisotropy during sheet forming processes. Chapter 4 is focused on modelling the evolution of voids in porous metals with applications to forming limit curves and ductile fracture. The chapter details the steps needed for the development of dissipation functions and Gurson-type models for non-quadratic anisotropic plasticity criteria like BBC 2005 and those based on linear transformations. Chapter 5 describes advanced models for the prediction of forming limit curves developed by the authors. Chapter 6 is devoted to anisotropic damage in elasto-plastic materials with structural defects. Finally, Chapter 7 deals with modelling of the Portevin-Le Chatelier (PLC) effect. This volume contains contributions from leading researchers from the Technical University of Cluj-Napoca, Romania, the Catholic University of Leuven, Belgium, Clausthal University of Technology, Germany, Amirkabir University of Technology, Iran, the University of Bucharest, Romania, and the Institute of Mathematics of the Romanian Academy, Romania. It will prove useful to postgraduate students, researchers and engineers who are interested in the mechanical modeling and numerical simulation of sheet metal forming processes.

Multiscale Materials Modelling

Multiscale Materials Modelling
Author: Z. X. Guo
Publisher: Elsevier
Total Pages: 307
Release: 2007-05-31
Genre: Technology & Engineering
ISBN: 184569337X

Download Multiscale Materials Modelling Book in PDF, Epub and Kindle

Multiscale materials modelling offers an integrated approach to modelling material behaviour across a range of scales from the electronic, atomic and microstructural up to the component level. As a result, it provides valuable new insights into complex structures and their properties, opening the way to develop new, multi-functional materials together with improved process and product designs. Multiscale materials modelling summarises some of the key techniques and their applications. The various chapters cover the spectrum of scales in modelling methodologies, including electronic structure calculations, mesoscale and continuum modelling. The book covers such themes as dislocation behaviour and plasticity as well as the modelling of structural materials such as metals, polymers and ceramics. With its distinguished editor and international team of contributors, Multiscale materials modelling is a valuable reference for both the modelling community and those in industry wanting to know more about how multiscale materials modelling can help optimise product and process design. Reviews the principles and applications of mult-scale materials modelling Covers themes such as dislocation behaviour and plasticity and the modelling of structural materials Examines the spectrum of scales in modelling methodologies, including electronic structure calculations, mesoscale and continuum modelling

Multiscale Materials Modeling for Nanomechanics

Multiscale Materials Modeling for Nanomechanics
Author: Christopher R. Weinberger
Publisher: Springer
Total Pages: 554
Release: 2016-08-30
Genre: Technology & Engineering
ISBN: 3319334808

Download Multiscale Materials Modeling for Nanomechanics Book in PDF, Epub and Kindle

This book presents a unique combination of chapters that together provide a practical introduction to multiscale modeling applied to nanoscale materials mechanics. The goal of this book is to present a balanced treatment of both the theory of the methodology, as well as some practical aspects of conducting the simulations and models. The first half of the book covers some fundamental modeling and simulation techniques ranging from ab-inito methods to the continuum scale. Included in this set of methods are several different concurrent multiscale methods for bridging time and length scales applicable to mechanics at the nanoscale regime. The second half of the book presents a range of case studies from a varied selection of research groups focusing either on a the application of multiscale modeling to a specific nanomaterial, or novel analysis techniques aimed at exploring nanomechanics. Readers are also directed to helpful sites and other resources throughout the book where the simulation codes and methodologies discussed herein can be accessed. Emphasis on the practicality of the detailed techniques is especially felt in the latter half of the book, which is dedicated to specific examples to study nanomechanics and multiscale materials behavior. An instructive avenue for learning how to effectively apply these simulation tools to solve nanomechanics problems is to study previous endeavors. Therefore, each chapter is written by a unique team of experts who have used multiscale materials modeling to solve a practical nanomechanics problem. These chapters provide an extensive picture of the multiscale materials landscape from problem statement through the final results and outlook, providing readers with a roadmap for incorporating these techniques into their own research.