Multiscale Analysis and Nonlinear Dynamics

Multiscale Analysis and Nonlinear Dynamics
Author: Misha Meyer Pesenson
Publisher: John Wiley & Sons
Total Pages: 307
Release: 2013-09-13
Genre: Science
ISBN: 352767165X

Download Multiscale Analysis and Nonlinear Dynamics Book in PDF, Epub and Kindle

Since modeling multiscale phenomena in systems biology and neuroscience is a highly interdisciplinary task, the editor of the book invited experts in bio-engineering, chemistry, cardiology, neuroscience, computer science, and applied mathematics, to provide their perspectives. Each chapter is a window into the current state of the art in the areas of research discussed and the book is intended for advanced researchers interested in recent developments in these fields. While multiscale analysis is the major integrating theme of the book, its subtitle does not call for bridging the scales from genes to behavior, but rather stresses the unifying perspective offered by the concepts referred to in the title. It is believed that the interdisciplinary approach adopted here will be beneficial for all the above mentioned fields.

Multiscale Analysis of Nonlinear Systems Using Computational Homology

Multiscale Analysis of Nonlinear Systems Using Computational Homology
Author:
Publisher:
Total Pages:
Release: 2010
Genre:
ISBN:

Download Multiscale Analysis of Nonlinear Systems Using Computational Homology Book in PDF, Epub and Kindle

This is a collaborative project between the principal investigators. However, as is to be expected, different PIs have greater focus on different aspects of the project. This report lists these major directions of research which were pursued during the funding period: (1) Computational Homology in Fluids - For the computational homology effort in thermal convection, the focus of the work during the first two years of the funding period included: (1) A clear demonstration that homology can sensitively detect the presence or absence of an important flow symmetry, (2) An investigation of homology as a probe for flow dynamics, and (3) The construction of a new convection apparatus for probing the effects of large-aspect-ratio. (2) Computational Homology in Cardiac Dynamics - We have initiated an effort to test the use of homology in characterizing data from both laboratory experiments and numerical simulations of arrhythmia in the heart. Recently, the use of high speed, high sensitivity digital imaging in conjunction with voltage sensitive fluorescent dyes has enabled researchers to visualize electrical activity on the surface of cardiac tissue, both in vitro and in vivo. (3) Magnetohydrodynamics - A new research direction is to use computational homology to analyze results of large scale simulations of 2D turbulence in the presence of magnetic fields. Such simulations are relevant to the dynamics of black hole accretion disks. The complex flow patterns from simulations exhibit strong qualitative changes as a function of magnetic field strength. Efforts to characterize the pattern changes using Fourier methods and wavelet analysis have been unsuccessful. (4) Granular Flow - two experts in the area of granular media are studying 2D model experiments of earthquake dynamics where the stress fields can be measured; these stress fields from complex patterns of 'force chains' that may be amenable to analysis using computational homology. (5) Microstructure Characterization - We extended our previous work on studying the time evolution of patterns associated with phase separation in conserved concentration fields. (6) Probabilistic Homology Validation - work on microstructure characterization is based on numerically studying the homology of certain sublevel sets of a function, whose evolution is described by deterministic or stochastic evolution equations. (7) Computational Homology and Dynamics - Topological methods can be used to rigorously describe the dynamics of nonlinear systems. We are approaching this problem from several perspectives and through a variety of systems. (8) Stress Networks in Polycrystals - we have characterized stress networks in polycrystals. This part of the project is aimed at developing homological metrics which can aid in distinguishing not only microstructures, but also derived mechanical response fields. (9) Microstructure-Controlled Drug Release - This part of the project is concerned with the development of topological metrics in the context of controlled drug delivery systems, such as drug-eluting stents. We are particularly interested in developing metrics which can be used to link the processing stage to the resulting microstructure, and ultimately to the achieved system response in terms of drug release profiles. (10) Microstructure of Fuel Cells - we have been using our computational homology software to analyze the topological structure of the void, metal and ceramic components of a Solid Oxide Fuel Cell.

Applied Nonlinear Dynamics

Applied Nonlinear Dynamics
Author: Ali H. Nayfeh
Publisher: John Wiley & Sons
Total Pages: 700
Release: 2008-11-20
Genre: Science
ISBN: 3527617558

Download Applied Nonlinear Dynamics Book in PDF, Epub and Kindle

A unified and coherent treatment of analytical, computational and experimental techniques of nonlinear dynamics with numerous illustrative applications. Features a discourse on geometric concepts such as Poincaré maps. Discusses chaos, stability and bifurcation analysis for systems of differential and algebraic equations. Includes scores of examples to facilitate understanding.

Analysis, Modeling and Simulation of Multiscale Problems

Analysis, Modeling and Simulation of Multiscale Problems
Author: Alexander Mielke
Publisher: Springer Science & Business Media
Total Pages: 704
Release: 2006-10-14
Genre: Mathematics
ISBN: 3540356576

Download Analysis, Modeling and Simulation of Multiscale Problems Book in PDF, Epub and Kindle

This book reports recent mathematical developments in the Programme "Analysis, Modeling and Simulation of Multiscale Problems", which started as a German research initiative in 2006. Multiscale problems occur in many fields of science, such as microstructures in materials, sharp-interface models, many-particle systems and motions on different spatial and temporal scales in quantum mechanics or in molecular dynamics. The book presents current mathematical foundations of modeling, and proposes efficient numerical treatment.

Global Analysis of Nonlinear Dynamics

Global Analysis of Nonlinear Dynamics
Author: Jian-Qiao Sun
Publisher: Springer Science & Business Media
Total Pages: 297
Release: 2012-05-01
Genre: Technology & Engineering
ISBN: 146143128X

Download Global Analysis of Nonlinear Dynamics Book in PDF, Epub and Kindle

Global Analysis of Nonlinear Dynamics collects chapters on recent developments in global analysis of non-linear dynamical systems with a particular emphasis on cell mapping methods developed by Professor C.S. Hsu of the University of California, Berkeley. This collection of contributions prepared by a diverse group of internationally recognized researchers is intended to stimulate interests in global analysis of complex and high-dimensional nonlinear dynamical systems, whose global properties are largely unexplored at this time.

Multiscale Multibody Dynamics

Multiscale Multibody Dynamics
Author: Jielong Wang
Publisher: Springer Nature
Total Pages: 367
Release: 2023-03-24
Genre: Technology & Engineering
ISBN: 9811984417

Download Multiscale Multibody Dynamics Book in PDF, Epub and Kindle

This book presents a novel theory of multibody dynamics with distinct features, including unified continuum theory, multiscale modeling technology of multibody system, and motion formalism implementation. All these features together with the introductions of fundamental concepts of vector, dual vector, tensor, dual tensor, recursive descriptions of joints, and the higher-order implicit solvers formulate the scope of the book’s content. In this book, a multibody system is defined as a set consisted of flexible and rigid bodies which are connected by any kinds of joints or constraints to achieve the desired motion. Generally, the motion of multibody system includes the translation and rotation; it is more efficient to describe the motion by using the dual vector or dual tensor directly instead of defining two types of variables, the translation and rotation separately. Furthermore, this book addresses the detail of motion formalism and its finite element implementation of the solid, shell-like, and beam-like structures. It also introduces the fundamental concepts of mechanics, such as the definition of vector, dual vector, tensor, and dual tensor, briefly. Without following the Einstein summation convention, the first- and second-order tensor operations in this book are depicted by linear algebraic operation symbols of row array, column array, and two-dimensional matrix, making these operations easier to understand. In addition, for the integral of governing equations of motion, a set of ordinary differential equations for the finite element-based discrete system, the book discussed the implementation of implicit solvers in detail and introduced the well-developed RADAU IIA algorithms based on post-error estimation to make the contents of the book complete. The intended readers of this book are senior engineers and graduate students in related engineering fields.

Multiscale Analysis of Deformation and Failure of Materials

Multiscale Analysis of Deformation and Failure of Materials
Author: Jinghong Fan
Publisher: John Wiley & Sons
Total Pages: 510
Release: 2011-06-28
Genre: Technology & Engineering
ISBN: 111995648X

Download Multiscale Analysis of Deformation and Failure of Materials Book in PDF, Epub and Kindle

Presenting cutting-edge research and development within multiscale modeling techniques and frameworks, Multiscale Analysis of Deformation and Failure of Materials systematically describes the background, principles and methods within this exciting new & interdisciplinary field. The author’s approach emphasizes the principles and methods of atomistic simulation and its transition to the nano and sub-micron scale of a continuum, which is technically important for nanotechnology and biotechnology. He also pays close attention to multiscale analysis across the micro/meso/macroscopy of a continuum, which has a broad scope of applications encompassing different disciplines and practices, and is an essential extension of mesomechanics. Of equal interest to engineers, scientists, academics and students, Multiscale Analysis of Deformation and Failure of Materials is a multidisciplinary text relevant to those working in the areas of materials science, solid and computational mechanics, bioengineering and biomaterials, and aerospace, automotive, civil, and environmental engineering. Provides a deep understanding of multiscale analysis and its implementation Shows in detail how multiscale models can be developed from practical problems and how to use the multiscale methods and software to carry out simulations Discusses two interlinked categories of multiscale analysis; analysis spanning from the atomistic to the micro-continuum scales, and analysis across the micro/meso/macro scale of continuum.

Understanding Nonlinear Dynamics

Understanding Nonlinear Dynamics
Author: Daniel Kaplan
Publisher: Springer Science & Business Media
Total Pages: 438
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461208238

Download Understanding Nonlinear Dynamics Book in PDF, Epub and Kindle

Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence of interest in the modern as well as the classical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mathematics ( TAM). The development of new courses is a natural consequence of a high level of excitement on the research frontier as newer techniques, such as numerical and symbolic computer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Mathematical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs. About the Authors Daniel Kaplan specializes in the analysis of data using techniques motivated by nonlinear dynamics. His primary interest is in the interpretation of irregular physiological rhythms, but the methods he has developed have been used in geo physics, economics, marine ecology, and other fields. He joined McGill in 1991, after receiving his Ph.D from Harvard University and working at MIT. His un dergraduate studies were completed at Swarthmore College. He has worked with several instrumentation companies to develop novel types of medical monitors.

Multiscale Analysis of Complex Time Series

Multiscale Analysis of Complex Time Series
Author: Jianbo Gao
Publisher: John Wiley & Sons
Total Pages: 368
Release: 2007-12-04
Genre: Mathematics
ISBN: 0470191643

Download Multiscale Analysis of Complex Time Series Book in PDF, Epub and Kindle

The only integrative approach to chaos and random fractal theory Chaos and random fractal theory are two of the most important theories developed for data analysis. Until now, there has been no single book that encompasses all of the basic concepts necessary for researchers to fully understand the ever-expanding literature and apply novel methods to effectively solve their signal processing problems. Multiscale Analysis of Complex Time Series fills this pressing need by presenting chaos and random fractal theory in a unified manner. Adopting a data-driven approach, the book covers: DNA sequence analysis EEG analysis Heart rate variability analysis Neural information processing Network traffic modeling Economic time series analysis And more Additionally, the book illustrates almost every concept presented through applications and a dedicated Web site is available with source codes written in various languages, including Java, Fortran, C, and MATLAB, together with some simulated and experimental data. The only modern treatment of signal processing with chaos and random fractals unified, this is an essential book for researchers and graduate students in electrical engineering, computer science, bioengineering, and many other fields.