Multiphysics Modeling Using COMSOL 5 and MATLAB, Second Edition

Multiphysics Modeling Using COMSOL 5 and MATLAB, Second Edition
Author: Roger W. Pryor Phd
Publisher:
Total Pages: 0
Release: 2022
Genre: Engineering mathematics
ISBN:

Download Multiphysics Modeling Using COMSOL 5 and MATLAB, Second Edition Book in PDF, Epub and Kindle

This updated edition includes five new models and explores a wide range of models in coordinate systems from 0D to 3D, introducing the numerical analysis techniques employed in COMSOL 5.6 and MATLAB software. --

Multiphysics Modeling Using COMSOL 5 and MATLAB

Multiphysics Modeling Using COMSOL 5 and MATLAB
Author: Roger W. Pryor
Publisher: Mercury Learning and Information
Total Pages: 743
Release: 2021-12-03
Genre: Technology & Engineering
ISBN: 1683925882

Download Multiphysics Modeling Using COMSOL 5 and MATLAB Book in PDF, Epub and Kindle

COMSOL 5 and MATLAB are valuable software modeling tools for engineers and scientists. This updated edition includes five new models and explores a wide range of models in coordinate systems from 0D to 3D, introducing the numerical analysis techniques employed in COMSOL 5.6 and MATLAB software. The text presents electromagnetic, electronic, optical, thermal physics, and biomedical models as examples. It presents the fundamental concepts in the models and the step-by-step instructions needed to build each model. The companion files include all the built models for each step-by-step example presented in the text and the related animations, as specified. The book is designed to introduce modeling to an experienced engineer or can also be used for upper level undergraduate or graduate courses. FEATURES: Focuses on COMSOL 5.x and MATLAB models that demonstrate the use of concepts for later application in engineering, science, medicine, and biophysics for the development of devices and systems Includes companion files with executable copies of each model and related animations Includes detailed discussions of possible modeling errors and results Uses a step-by-step modeling methodology linked to the Fundamental Laws of Physics. The companion files are also available online by emailing the publisher with proof of purchase at [email protected].

Multiphysics Modeling Using COMSOL®5 and MATLAB®

Multiphysics Modeling Using COMSOL®5 and MATLAB®
Author: Roger W. Pryor
Publisher:
Total Pages: 594
Release: 2016
Genre: COMSOL Multiphysics
ISBN: 9781523100156

Download Multiphysics Modeling Using COMSOL®5 and MATLAB® Book in PDF, Epub and Kindle

"COMSOL 5 and MATLAB are valuable software modeling tools for engineers and scientists. This book explores a wide range of models in coordinate systems from 0D to 3D and introduces the numerical analysis techniques employed in COMSOL 5 (including Application Builder) and MATLAB software. The text presents electromagnetic, electronic, optical, thermal physics, and biomedical models as examples. It presents the fundamental concepts in the models and the step-by-step instructions needed to build each model. The book is designed to introduce modeling to an experienced engineer or can also be used for upper level undergraduate or graduate courses." --

Multiphysics Modeling Using COMSOL?

Multiphysics Modeling Using COMSOL?
Author: Roger Pryor
Publisher: Jones & Bartlett Learning
Total Pages: 872
Release: 2011
Genre: Computers
ISBN: 0763779997

Download Multiphysics Modeling Using COMSOL? Book in PDF, Epub and Kindle

Multiphysics Modeling Using COMSOL? rapidly introduces the senior level undergraduate, graduate or professional scientist or engineer to the art and science of computerized modeling for physical systems and devices. It offers a step-by-step modeling methodology through examples that are linked to the Fundamental Laws of Physics through a First Principles Analysis approach. The text explores a breadth of multiphysics models in coordinate systems that range from 1D to 3D and introduces the readers to the numerical analysis modeling techniques employed in the COMSOL? Multiphysics? software. After readers have built and run the examples, they will have a much firmer understanding of the concepts, skills, and benefits acquired from the use of computerized modeling techniques to solve their current technological problems and to explore new areas of application for their particular technological areas of interest.

Multiphysics Modeling With Finite Element Methods

Multiphysics Modeling With Finite Element Methods
Author: William B J Zimmerman
Publisher: World Scientific Publishing Company
Total Pages: 434
Release: 2006-10-25
Genre: Technology & Engineering
ISBN: 9813106735

Download Multiphysics Modeling With Finite Element Methods Book in PDF, Epub and Kindle

Finite element methods for approximating partial differential equations that arise in science and engineering analysis find widespread application. Numerical analysis tools make the solutions of coupled physics, mechanics, chemistry, and even biology accessible to the novice modeler. Nevertheless, modelers must be aware of the limitations and difficulties in developing numerical models that faithfully represent the system they are modeling.This textbook introduces the intellectual framework for modeling with Comsol Multiphysics, a package which has unique features in representing multiply linked domains with complex geometry, highly coupled and nonlinear equation systems, and arbitrarily complicated boundary, auxiliary, and initial conditions. But with this modeling power comes great opportunities and great perils.Progressively, in the first part of the book the novice modeler develops an understanding of how to build up complicated models piecemeal and test them modularly. The second part of the book introduces advanced analysis techniques. The final part of the book deals with case studies in a broad range of application areas including nonlinear pattern formation, thin film dynamics and heterogeneous catalysis, composite and effective media for heat, mass, conductivity, and dispersion, population balances, tomography, multiphase flow, electrokinetic, microfluidic networks, plasma dynamics, and corrosion chemistry.As a revision of Process Modeling and Simulation with Finite Element Methods, this book uses the very latest features of Comsol Multiphysics. There are new case studies on multiphase flow with phase change, plasma dynamics, electromagnetohydrodynamics, microfluidic mixing, and corrosion. In addition, major improvements to the level set method for multiphase flow to ensure phase conservation is introduced.

Introduction to Chemical Engineering Computing

Introduction to Chemical Engineering Computing
Author: Bruce A. Finlayson
Publisher: John Wiley & Sons
Total Pages: 502
Release: 2014-03-05
Genre: Technology & Engineering
ISBN: 1118888375

Download Introduction to Chemical Engineering Computing Book in PDF, Epub and Kindle

Step-by-step instructions enable chemical engineers to master key software programs and solve complex problems Today, both students and professionals in chemical engineering must solve increasingly complex problems dealing with refineries, fuel cells, microreactors, and pharmaceutical plants, to name a few. With this book as their guide, readers learn to solve these problems using their computers and Excel, MATLAB, Aspen Plus, and COMSOL Multiphysics. Moreover, they learn how to check their solutions and validate their results to make sure they have solved the problems correctly. Now in its Second Edition, Introduction to Chemical Engineering Computing is based on the author’s firsthand teaching experience. As a result, the emphasis is on problem solving. Simple introductions help readers become conversant with each program and then tackle a broad range of problems in chemical engineering, including: Equations of state Chemical reaction equilibria Mass balances with recycle streams Thermodynamics and simulation of mass transfer equipment Process simulation Fluid flow in two and three dimensions All the chapters contain clear instructions, figures, and examples to guide readers through all the programs and types of chemical engineering problems. Problems at the end of each chapter, ranging from simple to difficult, allow readers to gradually build their skills, whether they solve the problems themselves or in teams. In addition, the book’s accompanying website lists the core principles learned from each problem, both from a chemical engineering and a computational perspective. Covering a broad range of disciplines and problems within chemical engineering, Introduction to Chemical Engineering Computing is recommended for both undergraduate and graduate students as well as practicing engineers who want to know how to choose the right computer software program and tackle almost any chemical engineering problem.

Modelling in Science and Engineering

Modelling in Science and Engineering
Author: Marcus Inácio
Publisher:
Total Pages: 255
Release: 2019-06-21
Genre:
ISBN: 9781795702348

Download Modelling in Science and Engineering Book in PDF, Epub and Kindle

This book gives the reader a brief introduction to the COMSOL Multiphysics software tool. Building COMSOL Multiphysics models in 2D or 3D will help students to consolidate their skills by applying basic theory to the real modelling of tasks that in the recent past would require months of programming and dedicated projects to solve a single problem. The examples illustrated in this book include modelling of heat transfer, the migration of a radioactive species in a channel using the Navier-Stokes equations and a chemical heterogenous reactor. These are problems that tend to be rather abstract until such time as a student applies these fundamental equations in practice. Advanced coupling between phenomena in fields such as electromagnetics with others such as heat transfer and computational fluid flow is made easy in COMSOL Multiphysics. A short introduction to the basics, concepts and techniques will allow the reader to progress rapidly and start developing his/her own models. In the second part of this book, some of the models developed in the first part are used to create model applications that can even run on a mobile phone. About the authors: António de Campos Pereira, PhD. in Physics, is an author and consultant. He is a retired researcher from the Dept. of Physics at Stockholm University. Prof. Isabel Paiva, Ph.D. in Chemical Engeneering, is a researcher at C2TN at IST, the School of Engineering of the University of Lisbon. Marcus Inácio has a B.Sc. in Electrotechnical Engineering and is specialising in the field of Medical Physics at KTH, the Royal Institute of Technology in Stockholm, Sweden. Hugo de Campos Pereira is an environmental engineer from Uppsala University and a Ph.D. student specialising in the sorption of highly fluorinated compounds in soils at the Department of Soil and Environment at SLU, the Swedish University of Agricultural Sciences in Uppsala, Sweden.

Optical Fiber Communications Systems

Optical Fiber Communications Systems
Author: Le Nguyen Binh
Publisher: CRC Press
Total Pages: 0
Release: 2010-04-19
Genre: Technology & Engineering
ISBN: 9781439806203

Download Optical Fiber Communications Systems Book in PDF, Epub and Kindle

Carefully structured to provide practical knowledge on fundamental issues, Optical Fiber Communications Systems: Theory and Practice with MATLAB® and Simulink® Models explores advanced modulation and transmission techniques of lightwave communication systems. With coverage ranging from fundamental to modern aspects, the text presents optical communication techniques and applications, employing single mode optical fibers as the transmission medium. With MATLAB and Simulink models that illustrate methods, it supplies a deeper understanding of future development of optical systems and networks. The book begins with an overview of the development of optical fiber communications technology over the last three decades of the 20th century. It describes the optical transmitters for direct and external modulation technique and discusses the detection of optical signals under direct coherent and incoherent reception. The author also covers lumped Er:doped and distributed Roman optical amplifiers with extensive models for the amplification of signals and structuring the amplifiers on the Simulink platform. He outlines a design strategy for optically amplified transmission systems coupled with MATLAB Simulink models, including dispersion and attenuation budget methodology and simulation techniques. The book concludes with coverage of advanced modulation formats for long haul optical fiber transmission systems with accompanied Simulink models. Although many books have been written on this topic over the last two decades, most of them present only the theory and practice of devices and subsystems of the optical fiber communications systems in the fields, but do not illustrate any computer models to represent the true practical aspects of engineering practice. This book fills the need for a text that emphasizes practical computing models that shed light on the behavior and dynamics of the devices.

Introduction to Integrative Engineering

Introduction to Integrative Engineering
Author: Guigen Zhang
Publisher: CRC Press
Total Pages: 424
Release: 2017-03-03
Genre: Health & Fitness
ISBN: 1315388456

Download Introduction to Integrative Engineering Book in PDF, Epub and Kindle

This textbook is designed for an introductory course at undergraduate and graduate levels for bioengineering students. It provides a systematic way of examining bioengineering problems in a multidisciplinary computational approach. The book introduces basic concepts of multidiscipline-based computational modeling methods, provides detailed step-by-step techniques to build a model with consideration of underlying multiphysics, and discusses many important aspects of a modeling approach including results interpretation, validation, and assessment.

Virtual Reality and Animation for MATLAB® and Simulink® Users

Virtual Reality and Animation for MATLAB® and Simulink® Users
Author: Nassim Khaled
Publisher: Springer Science & Business Media
Total Pages: 179
Release: 2012-01-02
Genre: Computers
ISBN: 1447123301

Download Virtual Reality and Animation for MATLAB® and Simulink® Users Book in PDF, Epub and Kindle

About this book · Gives the reader hands on example-base experience for simulating dynamical models in MATLAB®/Simulink® and animating them in VRML · More than 150 images describe each step in the model realizations helping readers to understand them visually · Diverse examples and profound problem treatment enable the reader to animate complex dynamical problems m-files, Simulink models, VRML files and jpegs available for download provide full solutions for the end-of-chapter problems Virtual Reality and Animation for MATLAB® and Simulink® Users demonstrates the simulation and animation of physical systems using the MATLAB® Virtual Reality Toolbox (virtual models are created in V-Realm Builder). The book is divided into two parts; the first addresses MATLAB® and the second Simulink®. The presentation is problem-based with each chapter teaching the reader a group of essential principles in the context of a step-by-step solution to a particular issue. Examples of the systems covered include mass-spring-dampers, a crank-slider mechanism and a moving vehicle. The examples are given in ascending level of difficulty and contain MATLAB®/Simulink® codes deliberately simplified so that readers can focus on: • understanding how to link a 3-d virtual scene to MATLAB®/Simulink®; and • manipulating the 3-d virtual scene in MATLAB®/Simulink®. When studied in sequence, the chapters of this text form a coherent whole enabling the reader to gain a thorough expertise in virtual simulation and animation of dynamical models using MATLAB®/Simulink®. Individual chapters stand on their own, however, so that readers interested in a particular system can concentrate on it easily. Problems are provided in each chapter to give practice in the techniques demonstrated and to extend the range of the systems studied, for example, into the control sphere. Solution code for these problems can be downloaded from insert URL. Whether modeling the dynamics of a simple pendulum, a robot arm or a moving car, animation of a dynamical model can enliven and encourage understanding of mechanical systems and thus contribute to control design. Virtual Reality and Animation for MATLAB® and Simulink® Users will be instructive and interesting to anyone, researcher or student, working with the dynamics of physical systems. Readers are assumed to have some familiarity with MATLAB®.