Multiphysics Modeling: Numerical Methods and Engineering Applications

Multiphysics Modeling: Numerical Methods and Engineering Applications
Author: Qun Zhang
Publisher: Elsevier
Total Pages: 440
Release: 2015-12-15
Genre: Technology & Engineering
ISBN: 0124077374

Download Multiphysics Modeling: Numerical Methods and Engineering Applications Book in PDF, Epub and Kindle

Multiphysics Modeling: Numerical Methods and Engineering Applications: Tsinghua University Press Computational Mechanics Series describes the basic principles and methods for multiphysics modeling, covering related areas of physics such as structure mechanics, fluid dynamics, heat transfer, electromagnetic field, and noise. The book provides the latest information on basic numerical methods, also considering coupled problems spanning fluid-solid interaction, thermal-stress coupling, fluid-solid-thermal coupling, electromagnetic solid thermal fluid coupling, and structure-noise coupling. Users will find a comprehensive book that covers background theory, algorithms, key technologies, and applications for each coupling method. Presents a wealth of multiphysics modeling methods, issues, and worked examples in a single volume Provides a go-to resource for coupling and multiphysics problems Covers the multiphysics details not touched upon in broader numerical methods references, including load transfer between physics, element level strong coupling, and interface strong coupling, amongst others Discusses practical applications throughout and tackles real-life multiphysics problems across areas such as automotive, aerospace, and biomedical engineering

Multiphysics Modeling with Finite Element Methods

Multiphysics Modeling with Finite Element Methods
Author: William B J Zimmerman
Publisher: World Scientific Publishing Company
Total Pages: 432
Release: 2006-10-25
Genre: Technology & Engineering
ISBN: 9813106735

Download Multiphysics Modeling with Finite Element Methods Book in PDF, Epub and Kindle

Finite element methods for approximating partial differential equations that arise in science and engineering analysis find widespread application. Numerical analysis tools make the solutions of coupled physics, mechanics, chemistry, and even biology accessible to the novice modeler. Nevertheless, modelers must be aware of the limitations and difficulties in developing numerical models that faithfully represent the system they are modeling. This textbook introduces the intellectual framework for modeling with Comsol Multiphysics, a package which has unique features in representing multiply linked domains with complex geometry, highly coupled and nonlinear equation systems, and arbitrarily complicated boundary, auxiliary, and initial conditions. But with this modeling power comes great opportunities and great perils. Progressively, in the first part of the book the novice modeler develops an understanding of how to build up complicated models piecemeal and test them modularly. The second part of the book introduces advanced analysis techniques. The final part of the book deals with case studies in a broad range of application areas including nonlinear pattern formation, thin film dynamics and heterogeneous catalysis, composite and effective media for heat, mass, conductivity, and dispersion, population balances, tomography, multiphase flow, electrokinetic, microfluidic networks, plasma dynamics, and corrosion chemistry. As a revision of Process Modeling and Simulation with Finite Element Methods, this book uses the very latest features of Comsol Multiphysics. There are new case studies on multiphase flow with phase change, plasma dynamics, electromagnetohydrodynamics, microfluidic mixing, and corrosion. In addition, major improvements to the level set method for multiphase flow to ensure phase conservation is introduced. More information about COMSOL can be found here.

Numerical Modeling of Coupled Phenomena in Science and Engineering

Numerical Modeling of Coupled Phenomena in Science and Engineering
Author: Mario César Suárez Arriaga
Publisher: CRC Press
Total Pages: 496
Release: 2008-12-01
Genre: Technology & Engineering
ISBN: 0203886224

Download Numerical Modeling of Coupled Phenomena in Science and Engineering Book in PDF, Epub and Kindle

Mathematics is a universal language. Differential equations, mathematical modeling, numerical methods and computation form the underlying infrastructure of engineering and the sciences. In this context mathematical modeling is a very powerful tool for studying engineering problems, natural systems and human society. This interdisciplinary book cont

Drilling and Completion in Petroleum Engineering

Drilling and Completion in Petroleum Engineering
Author: Xinpu Shen
Publisher: CRC Press
Total Pages: 247
Release: 2011-10-19
Genre: Science
ISBN: 1439870551

Download Drilling and Completion in Petroleum Engineering Book in PDF, Epub and Kindle

Modern petroleum and petrotechnical engineering is increasingly challenging due to the inherently scarce and decreasing number of global petroleum resources. Exploiting these resources efficiently will require researchers, scientists, engineers and other practitioners to develop innovative mathematical solutions to serve as basis for new asset deve

Multiphysics Simulation

Multiphysics Simulation
Author: Ercan M. Dede
Publisher: Springer
Total Pages: 225
Release: 2014-05-28
Genre: Computers
ISBN: 1447156404

Download Multiphysics Simulation Book in PDF, Epub and Kindle

This book highlights a unique combination of numerical tools and strategies for handling the challenges of multiphysics simulation, with a specific focus on electromechanical systems as the target application. Features: introduces the concept of design via simulation, along with the role of multiphysics simulation in today’s engineering environment; discusses the importance of structural optimization techniques in the design and development of electromechanical systems; provides an overview of the physics commonly involved with electromechanical systems for applications such as electronics, magnetic components, RF components, actuators, and motors; reviews the governing equations for the simulation of related multiphysics problems; outlines relevant (topology and parametric size) optimization methods for electromechanical systems; describes in detail several multiphysics simulation and optimization example studies in both two and three dimensions, with sample numerical code.

Numerical Methods for Reliability and Safety Assessment

Numerical Methods for Reliability and Safety Assessment
Author: Seifedine Kadry
Publisher: Springer
Total Pages: 807
Release: 2014-09-30
Genre: Science
ISBN: 331907167X

Download Numerical Methods for Reliability and Safety Assessment Book in PDF, Epub and Kindle

This book offers unique insight on structural safety and reliability by combining computational methods that address multiphysics problems, involving multiple equations describing different physical phenomena and multiscale problems, involving discrete sub-problems that together describe important aspects of a system at multiple scales. The book examines a range of engineering domains and problems using dynamic analysis, nonlinear methods, error estimation, finite element analysis and other computational techniques. This book also: · Introduces novel numerical methods · Illustrates new practical applications · Examines recent engineering applications · Presents up-to-date theoretical results · Offers perspective relevant to a wide audience, including teaching faculty/graduate students, researchers and practicing engineers.

Multiphysics Simulations in Automotive and Aerospace Applications

Multiphysics Simulations in Automotive and Aerospace Applications
Author: Mojtaba Moatamedi
Publisher: Elsevier
Total Pages: 299
Release: 2021-07-23
Genre: Technology & Engineering
ISBN: 012817899X

Download Multiphysics Simulations in Automotive and Aerospace Applications Book in PDF, Epub and Kindle

Multiphysics Simulations in Automotive and Aerospace Applications provides the fundamentals and latest developments on numerical methods for solving multiphysics problems, including fluid-solid interaction, fluid-structure-thermal coupling, electromagnetic-fluid-solid coupling, vibro and aeroacoustics. Chapters describe the different algorithms and numerical methods used for solving coupled problems using implicit or explicit coupling problems from industrial or academic applications. Given the book's comprehensive coverage, automotive and aerospace engineers, designers, graduate students and researchers involved in the simulation of practical coupling problems will find the book useful in its approach. Provides the fundamentals of numerical methods, along with comprehensive examples for solving coupled problems Features multi-physics methods and available codes, along with what those codes can do Presents examples from industrial and academic applications

Multiphysics Modeling

Multiphysics Modeling
Author: Murat Peksen
Publisher: Academic Press
Total Pages: 282
Release: 2018-06-27
Genre: Technology & Engineering
ISBN: 0128119039

Download Multiphysics Modeling Book in PDF, Epub and Kindle

Multiphysics Modelling: Materials, Components, and Systems focuses on situations where coupled phenomena involving a combination of thermal, fluid, and solid mechanics occur. Important fundamentals of the various physics that are required in multiphysics modelling are introduced and supported with practical problems. More advanced topics such as creep deformation, fatigue and fracture, multiphase flow or melting in porous media are tackled. 3D interactions in system architectures and energy systems such as batteries, reformer or fuel cells, and modelling of high-performance materials are exemplified. Important multiphysics modelling issues are highlighted. In addition to theory, solutions to problems, such as in linear and non-linear situations are addressed, as well as specific solutions for multiphysics modelling of fluid-solid, solid-solid and fluid-fluid interactions are given. Drawing on teaching experience, industry solutions, and the latest research, this book is the most complete guide to multiphysics modelling available for students and researchers in diverse science and engineering disciplines. Provides a thorough intro to the theory behind multiphysics modeling Covers both linear and non-linear material behaviors Helps to answer practical questions such as when to use 2D or 3D modeling

Multiphysics Modelling of Fluid-Particulate Systems

Multiphysics Modelling of Fluid-Particulate Systems
Author: Hassan Khawaja
Publisher: Academic Press
Total Pages: 384
Release: 2020-03-14
Genre: Science
ISBN: 0128183462

Download Multiphysics Modelling of Fluid-Particulate Systems Book in PDF, Epub and Kindle

Multiphysics Modelling of Fluid-Particulate Systems provides an explanation of how to model fluid-particulate systems using Eulerian and Lagrangian methods. The computational cost and relative merits of the different methods are compared, with recommendations on where and how to apply them provided. The science underlying the fluid-particulate phenomena involves computational fluid dynamics (for liquids and gases), computational particle dynamics (solids), and mass and heat transfer. In order to simulate these systems, it is essential to model the interactions between phases and the fluids and particles themselves. This book details instructions for several numerical methods of dealing with this complex problem. This book is essential reading for researchers from all backgrounds interested in multiphase flows or fluid-solid modeling, as well as engineers working on related problems in chemical engineering, food science, process engineering, geophysics or metallurgical processing. Provides detailed coverage of Resolved and Unresolved Computational Fluid Dynamics - Discrete Element Method (CFD-DEM), Smoothed Particle Hydrodynamics, and their various attributes Gives an excellent summary of a range of simulation techniques and provides numerical examples Starts with a broad introduction to fluid-particulate systems to help readers from a range of disciplines grasp fundamental principles

Multiphysics Phase-Field Fracture

Multiphysics Phase-Field Fracture
Author: Thomas Wick
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 411
Release: 2020-10-12
Genre: Mathematics
ISBN: 3110494191

Download Multiphysics Phase-Field Fracture Book in PDF, Epub and Kindle

This monograph is centered on mathematical modeling, innovative numerical algorithms and adaptive concepts to deal with fracture phenomena in multiphysics. State-of-the-art phase-field fracture models are complemented with prototype explanations and rigorous numerical analysis. These developments are embedded into a carefully designed balance between scientific computing aspects and numerical modeling of nonstationary coupled variational inequality systems. Therein, a focus is on nonlinear solvers, goal-oriented error estimation, predictor-corrector adaptivity, and interface conditions. Engineering applications show the potential for tackling practical problems within the fields of solid mechanics, porous media, and fluidstructure interaction.