Multicore Hardware-software Design and Verification Techniques

Multicore Hardware-software Design and Verification Techniques
Author: Pao-Ann Hsiung
Publisher: Bentham Science Publishers
Total Pages: 105
Release: 2011
Genre: Computers
ISBN: 1608052257

Download Multicore Hardware-software Design and Verification Techniques Book in PDF, Epub and Kindle

"The surge of multicore processors coming into the market and on users' desktops has made parallel computing the focus of attention once again. This time, however, it is led by the industry, which ensures that multicore computing is here to stay. Neverthel"

Hardware/Software Co-Design and Co-Verification

Hardware/Software Co-Design and Co-Verification
Author: Jean-Michel Bergé
Publisher: Springer Science & Business Media
Total Pages: 178
Release: 2013-03-09
Genre: Technology & Engineering
ISBN: 1475726295

Download Hardware/Software Co-Design and Co-Verification Book in PDF, Epub and Kindle

Co-Design is the set of emerging techniques which allows for the simultaneous design of Hardware and Software. In many cases where the application is very demanding in terms of various performances (time, surface, power consumption), trade-offs between dedicated hardware and dedicated software are becoming increasingly difficult to decide upon in the early stages of a design. Verification techniques - such as simulation or proof techniques - that have proven necessary in the hardware design must be dramatically adapted to the simultaneous verification of Software and Hardware. Describing the latest tools available for both Co-Design and Co-Verification of systems, Hardware/Software Co-Design and Co-Verification offers a complete look at this evolving set of procedures for CAD environments. The book considers all trade-offs that have to be made when co-designing a system. Several models are presented for determining the optimum solution to any co-design problem, including partitioning, architecture synthesis and code generation. When deciding on trade-offs, one of the main factors to be considered is the flow of communication, especially to and from the outside world. This involves the modeling of communication protocols. An approach to the synthesis of interface circuits in the context of co-design is presented. Other chapters present a co-design oriented flexible component data-base and retrieval methods; a case study of an ethernet bridge, designed using LOTOS and co-design methodologies and finally a programmable user interface based on monitors. Hardware/Software Co-Design and Co-Verification will help designers and researchers to understand these latest techniques in system design and as such will be of interest to all involved in embedded system design.

MULTICORE SYSTEMS ON-CHIP

MULTICORE SYSTEMS ON-CHIP
Author: Ben Abadallah Abderazek
Publisher: Springer Science & Business Media
Total Pages: 196
Release: 2010-08-01
Genre: Computers
ISBN: 9491216333

Download MULTICORE SYSTEMS ON-CHIP Book in PDF, Epub and Kindle

Conventional on-chip communication design mostly use ad-hoc approaches that fail to meet the challenges posed by the next-generation MultiCore Systems on-chip (MCSoC) designs. These major challenges include wiring delay, predictability, diverse interconnection architectures, and power dissipation. A Network-on-Chip (NoC) paradigm is emerging as the solution for the problems of interconnecting dozens of cores into a single system on-chip. However, there are many problems associated with the design of such systems. These problems arise from non-scalable global wire delays, failure to achieve global synchronization, and difficulties associated with non-scalable bus-based functional interconnects. The book consists of three parts, with each part being subdivided into four chapters. The first part deals with design and methodology issues. The architectures used in conventional methods of MCSoCs design and custom multiprocessor architectures are not flexible enough to meet the requirements of different application domains and not scalable enough to meet different computation needs and different complexities of various applications. Several chapters of the first part will emphasize on the design techniques and methodologies. The second part covers the most critical part of MCSoCs design — the interconnections. One approach to addressing the design methodologies is to adopt the so-called reusability feature to boost design productivity. In the past years, the primitive design units evolved from transistors to gates, finite state machines, and processor cores. The network-on-chip paradigm offers this attractive property for the future and will be able to close the productivity gap. The last part of this book delves into MCSoCs validations and optimizations. A more qualitative approach of system validation is based on the use of formal techniques for hardware design. The main advantage of formal methods is the possibility to prove the validity of essential design requirements. As formal languages have a mathematical foundation, it is possible to formally extract and verify these desired properties of the complete abstract state space. Online testing techniques for identifying faults that can lead to system failure are also surveyed. Emphasis is given to analytical redundancy-based techniques that have been developed for fault detection and isolation in the automatic control area.

Multicore Software Development Techniques

Multicore Software Development Techniques
Author: Robert Oshana
Publisher: Newnes
Total Pages: 233
Release: 2015-11-18
Genre: Computers
ISBN: 0128010371

Download Multicore Software Development Techniques Book in PDF, Epub and Kindle

This book provides a set of practical processes and techniques used for multicore software development. It is written with a focus on solving day to day problems using practical tips and tricks and industry case studies to reinforce the key concepts in multicore software development. Coverage includes: The multicore landscape Principles of parallel computing Multicore SoC architectures Multicore programming models The Multicore development process Multicore programming with threads Concurrency abstraction layers Debugging Multicore Systems Practical techniques for getting started in multicore development Case Studies in Multicore Systems Development Sample code to reinforce many of the concepts discussed Presents the ‘nuts and bolts’ of programming a multicore system Provides a short-format book on the practical processes and techniques used in multicore software development Covers practical tips, tricks and industry case studies to enhance the learning process

Multicore Systems On-Chip: Practical Software/Hardware Design

Multicore Systems On-Chip: Practical Software/Hardware Design
Author: Abderazek Ben Abdallah
Publisher: Springer Science & Business Media
Total Pages: 291
Release: 2013-07-20
Genre: Computers
ISBN: 9491216929

Download Multicore Systems On-Chip: Practical Software/Hardware Design Book in PDF, Epub and Kindle

System on chips designs have evolved from fairly simple unicore, single memory designs to complex heterogeneous multicore SoC architectures consisting of a large number of IP blocks on the same silicon. To meet high computational demands posed by latest consumer electronic devices, most current systems are based on such paradigm, which represents a real revolution in many aspects in computing. The attraction of multicore processing for power reduction is compelling. By splitting a set of tasks among multiple processor cores, the operating frequency necessary for each core can be reduced, allowing to reduce the voltage on each core. Because dynamic power is proportional to the frequency and to the square of the voltage, we get a big gain, even though we may have more cores running. As more and more cores are integrated into these designs to share the ever increasing processing load, the main challenges lie in efficient memory hierarchy, scalable system interconnect, new programming paradigms, and efficient integration methodology for connecting such heterogeneous cores into a single system capable of leveraging their individual flexibility. Current design methods tend toward mixed HW/SW co-designs targeting multicore systems on-chip for specific applications. To decide on the lowest cost mix of cores, designers must iteratively map the device’s functionality to a particular HW/SW partition and target architectures. In addition, to connect the heterogeneous cores, the architecture requires high performance complex communication architectures and efficient communication protocols, such as hierarchical bus, point-to-point connection, or Network-on-Chip. Software development also becomes far more complex due to the difficulties in breaking a single processing task into multiple parts that can be processed separately and then reassembled later. This reflects the fact that certain processor jobs cannot be easily parallelized to run concurrently on multiple processing cores and that load balancing between processing cores – especially heterogeneous cores – is very difficult.

Advanced Verification Techniques

Advanced Verification Techniques
Author: Leena Singh
Publisher: Springer Science & Business Media
Total Pages: 388
Release: 2007-05-08
Genre: Technology & Engineering
ISBN: 1402080298

Download Advanced Verification Techniques Book in PDF, Epub and Kindle

"As chip size and complexity continues to grow exponentially, the challenges of functional verification are becoming a critical issue in the electronics industry. It is now commonly heard that logical errors missed during functional verification are the most common cause of chip re-spins, and that the costs associated with functional verification are now outweighing the costs of chip design. To cope with these challenges engineers are increasingly relying on new design and verification methodologies and languages. Transaction-based design and verification, constrained random stimulus generation, functional coverage analysis, and assertion-based verification are all techniques that advanced design and verification teams routinely use today. Engineers are also increasingly turning to design and verification models based on C/C++ and SystemC in order to build more abstract, higher performance hardware and software models and to escape the limitations of RTL HDLs. This new book, Advanced Verification Techniques, provides specific guidance for these advanced verification techniques. The book includes realistic examples and shows how SystemC and SCV can be applied to a variety of advanced design and verification tasks." - Stuart Swan

System-Level Validation

System-Level Validation
Author: Mingsong Chen
Publisher: Springer Science & Business Media
Total Pages: 259
Release: 2012-09-19
Genre: Technology & Engineering
ISBN: 1461413583

Download System-Level Validation Book in PDF, Epub and Kindle

This book covers state-of-the art techniques for high-level modeling and validation of complex hardware/software systems, including those with multicore architectures. Readers will learn to avoid time-consuming and error-prone validation from the comprehensive coverage of system-level validation, including high-level modeling of designs and faults, automated generation of directed tests, and efficient validation methodology using directed tests and assertions. The methodologies described in this book will help designers to improve the quality of their validation, performing as much validation as possible in the early stages of the design, while reducing the overall validation effort and cost.

Multicore Software Engineering, Performance, and Tools

Multicore Software Engineering, Performance, and Tools
Author: João M. Lourenço
Publisher: Springer
Total Pages: 119
Release: 2013-09-25
Genre: Computers
ISBN: 364239955X

Download Multicore Software Engineering, Performance, and Tools Book in PDF, Epub and Kindle

This book constitutes the refereed proceedings of the International Conference on Multiscore Software Engineering, Performance, and Tools, MUSEPAT 2013, held in Saint Petersburg, Russia, in August 2013. The 9 revised papers were carefully reviewed and selected from 25 submissions. The accepted papers are organized into three main sessions and cover topics such as software engineering for multicore systems; specification, modeling and design; programing models, languages, compiler techniques and development tools; verification, testing, analysis, debugging and performance tuning, security testing; software maintenance and evolution; multicore software issues in scientific computing, embedded and mobile systems; energy-efficient computing as well as experience reports.

High-Level Verification

High-Level Verification
Author: Sudipta Kundu
Publisher: Springer Science & Business Media
Total Pages: 176
Release: 2011-05-18
Genre: Technology & Engineering
ISBN: 1441993592

Download High-Level Verification Book in PDF, Epub and Kindle

Given the growing size and heterogeneity of Systems on Chip (SOC), the design process from initial specification to chip fabrication has become increasingly complex. This growing complexity provides incentive for designers to use high-level languages such as C, SystemC, and SystemVerilog for system-level design. While a major goal of these high-level languages is to enable verification at a higher level of abstraction, allowing early exploration of system-level designs, the focus so far for validation purposes has been on traditional testing techniques such as random testing and scenario-based testing. This book focuses on high-level verification, presenting a design methodology that relies upon advances in synthesis techniques as well as on incremental refinement of the design process. These refinements can be done manually or through elaboration tools. This book discusses verification of specific properties in designs written using high-level languages, as well as checking that the refined implementations are equivalent to their high-level specifications. The novelty of each of these techniques is that they use a combination of formal techniques to do scalable verification of system designs completely automatically. The verification techniques presented in this book include methods for verifying properties of high-level designs and methods for verifying that the translation from high-level design to a low-level Register Transfer Language (RTL) design preserves semantics. Used together, these techniques guarantee that properties verified in the high-level design are preserved through the translation to low-level RTL.

Reconfigurable System Design and Verification

Reconfigurable System Design and Verification
Author: Pao-Ann Hsiung
Publisher: CRC Press
Total Pages: 217
Release: 2018-10-08
Genre: Computers
ISBN: 1351834924

Download Reconfigurable System Design and Verification Book in PDF, Epub and Kindle

Reconfigurable systems have pervaded nearly all fields of computation and will continue to do so for the foreseeable future. Reconfigurable System Design and Verification provides a compendium of design and verification techniques for reconfigurable systems, allowing you to quickly search for a technique and determine if it is appropriate to the task at hand. It bridges the gap between the need for reconfigurable computing education and the burgeoning development of numerous different techniques in the design and verification of reconfigurable systems in various application domains. The text explains topics in such a way that they can be immediately grasped and put into practice. It starts with an overview of reconfigurable computing architectures and platforms and demonstrates how to develop reconfigurable systems. This sets up the discussion of the hardware, software, and system techniques that form the core of the text. The authors classify design and verification techniques into primary and secondary categories, allowing the appropriate ones to be easily located and compared. The techniques discussed range from system modeling and system-level design to co-simulation and formal verification. Case studies illustrating real-world applications, detailed explanations of complex algorithms, and self-explaining illustrations add depth to the presentation. Comprehensively covering all techniques related to the hardware-software design and verification of reconfigurable systems, this book provides a single source for information that otherwise would have been dispersed among the literature, making it very difficult to search, compare, and select the technique most suitable. The authors do it all for you, making it easy to find the techniques that fit your system requirements, without having to surf the net or digital libraries to find the candidate techniques and compare them yourself.