Modelling and Optimization of Biotechnological Processes

Modelling and Optimization of Biotechnological Processes
Author: Lei Zhi Chen
Publisher: Springer
Total Pages: 129
Release: 2007-07-04
Genre: Technology & Engineering
ISBN: 3540324933

Download Modelling and Optimization of Biotechnological Processes Book in PDF, Epub and Kindle

Mostindustrialbiotechnologicalprocessesareoperatedempirically.Oneofthe major di?culties of applying advanced control theories is the highly nonlinear nature of the processes. This book examines approaches based on arti?cial intelligencemethods,inparticular,geneticalgorithmsandneuralnetworks,for monitoring, modelling and optimization of fed-batch fermentation processes. The main aim of a process control is to maximize the ?nal product with minimum development and production costs. This book is interdisciplinary in nature, combining topics from biotechn- ogy, arti?cial intelligence, system identi?cation, process monitoring, process modelling and optimal control. Both simulation and experimental validation are performed in this study to demonstrate the suitability and feasibility of proposed methodologies. An online biomass sensor is constructed using a - current neural network for predicting the biomass concentration online with only three measurements (dissolved oxygen, volume and feed rate). Results show that the proposed sensor is comparable or even superior to other sensors proposed in the literature that use more than three measurements. Biote- nological processes are modelled by cascading two recurrent neural networks. It is found that neural models are able to describe the processes with high accuracy. Optimization of the ?nal product is achieved using modi?ed genetic algorithms to determine optimal feed rate pro?les. Experimental results of the corresponding production yields demonstrate that genetic algorithms are powerful tools for optimization of highly nonlinear systems. Moreover, a c- bination of recurrentneural networks and genetic algorithms provides a useful and cost-e?ective methodology for optimizing biotechnological processes.

Modelling and Optimization of Biotechnological Processes

Modelling and Optimization of Biotechnological Processes
Author: Lei Zhi Chen
Publisher: Springer
Total Pages: 129
Release: 2007-07-04
Genre: Technology & Engineering
ISBN: 3540324933

Download Modelling and Optimization of Biotechnological Processes Book in PDF, Epub and Kindle

Mostindustrialbiotechnologicalprocessesareoperatedempirically.Oneofthe major di?culties of applying advanced control theories is the highly nonlinear nature of the processes. This book examines approaches based on arti?cial intelligencemethods,inparticular,geneticalgorithmsandneuralnetworks,for monitoring, modelling and optimization of fed-batch fermentation processes. The main aim of a process control is to maximize the ?nal product with minimum development and production costs. This book is interdisciplinary in nature, combining topics from biotechn- ogy, arti?cial intelligence, system identi?cation, process monitoring, process modelling and optimal control. Both simulation and experimental validation are performed in this study to demonstrate the suitability and feasibility of proposed methodologies. An online biomass sensor is constructed using a - current neural network for predicting the biomass concentration online with only three measurements (dissolved oxygen, volume and feed rate). Results show that the proposed sensor is comparable or even superior to other sensors proposed in the literature that use more than three measurements. Biote- nological processes are modelled by cascading two recurrent neural networks. It is found that neural models are able to describe the processes with high accuracy. Optimization of the ?nal product is achieved using modi?ed genetic algorithms to determine optimal feed rate pro?les. Experimental results of the corresponding production yields demonstrate that genetic algorithms are powerful tools for optimization of highly nonlinear systems. Moreover, a c- bination of recurrentneural networks and genetic algorithms provides a useful and cost-e?ective methodology for optimizing biotechnological processes.

Modelling and Control of Biotechnological Processes

Modelling and Control of Biotechnological Processes
Author: A. Johnson
Publisher: Elsevier
Total Pages: 274
Release: 2014-05-17
Genre: Technology & Engineering
ISBN: 1483160521

Download Modelling and Control of Biotechnological Processes Book in PDF, Epub and Kindle

Modelling and Control of Biotechnological Processes contains the proceedings of the International Federation of Automatic Control's First Symposium on Modeling and Control of Biotechnological Processes held in Noordwijkerhout, The Netherlands, on December 11-13, 1985. The papers explore modeling and control of biotechnological processes such as fermentation and biological wastewater treatment. This book consists of 37 chapters divided into 11 sections and begins with a discussion on the control of fermentation processes; modeling of biotechnical processes; and application of measurement and estimation techniques to biotechnology. The following sections focus on adaptive control theory, applications of adaptive control, and control and modeling of bioreactors. The reader is also introduced to measurement techniques and sensors, with emphasis on pyrolysis mass spectrometry; rapid bioelectrochemical methods; and a self-tuning controller for multiloop controlled fed-batch fermentation. The remaining sections deal with parameter identification and estimation; Kalman filtering techniques; optimization of production processes; modeling of microkinetics; and optimization theory. This monograph will be of interest to researchers and practitioners in the field of biotechnology.

Biotechnology for Biofuel Production and Optimization

Biotechnology for Biofuel Production and Optimization
Author: Carrie A Eckert
Publisher: Elsevier
Total Pages: 574
Release: 2016-01-19
Genre: Science
ISBN: 0081000537

Download Biotechnology for Biofuel Production and Optimization Book in PDF, Epub and Kindle

Biotechnology for Biofuel Production and Optimization is the compilation of current research findings that cover the entire process of biofuels production from manipulation of genes and pathways to organisms and renewable feedstocks for efficient biofuel production as well as different cultivation techniques and process scale-up considerations. This book captures recent breakthroughs in the interdisciplinary areas of systems and synthetic biology, metabolic engineering, and bioprocess engineering for renewable, cleaner sources of energy. Describes state-of-the-art engineering of metabolic pathways for the production of a variety of fuel molecules Discusses recent advances in synthetic biology and metabolic engineering for rational design, construction, evaluation of novel pathways and cell chassis Covers genome engineering technologies to address complex biofuel-tolerant phenotypes for enhanced biofuel production in engineered chassis Presents the use of novel microorganisms and expanded substrate utilization strategies for production of targeted fuel molecules Explores biohybrid methods for harvesting bioenergy Discusses bioreactor design and optimization of scale-up

Computer Applications in Fermentation Technology: Modelling and Control of Biotechnological Processes

Computer Applications in Fermentation Technology: Modelling and Control of Biotechnological Processes
Author: N. M. Fish
Publisher: Springer Science & Business Media
Total Pages: 451
Release: 2012-12-06
Genre: Science
ISBN: 9400911416

Download Computer Applications in Fermentation Technology: Modelling and Control of Biotechnological Processes Book in PDF, Epub and Kindle

Richard Fox Chairman, Scientific Programme Committee Between 25th and 29th September, 1988, 243 people who either apply or research the use of computers in fermentation gathered together at Robinson College, Cambridge, UK. They came from 30 countries. The conference brought together two traditions. Firstly, it continued the series on Computer Applications in Fermentation Technology (ICCAFT) inaugurated by Henri Blanchere in Dijon in 1973 and carried forward in Philadelphia and Manchester. Secondly, it brought the expertise of the many members of the International Federation of Automatic Control (IFAC), who focused their attention on biotechnology at Noordwijkerhout in the Netherlands in December, 1985. I am happy to say that the tradition carries on and a successor meeting will hopefully take place in the USA in 1991. If you find these proceedings useful or stimulating, then we hope to see you there. We set out to make ICCAFT4 a close-knit friendly conference. We housed all who cared to in Robinson College itself and organised no parallel sessions. Because we, the organisers, experience difficulty with the jargon of our colleagues from other disciplines, we asked Bruce Beck to present a breakfast tutorial on modern control and modelling techniques, and we set up informal panel discussions after dinner on two evenings. Neville Fish chaired a forum on the microbiological principles behind models, while Professors Derek Linkens and Ron Leigh led a discussion on expert systems in control.

Digital Twins

Digital Twins
Author: Christoph Herwig
Publisher: Springer Nature
Total Pages: 254
Release: 2021-04-25
Genre: Technology & Engineering
ISBN: 3030716562

Download Digital Twins Book in PDF, Epub and Kindle

This is the second of two volumes that together provide an overview of the latest advances in the generation and application of digital twins in bioprocess design and optimization. Both processes have undergone significant changes over the past few decades, moving from data-driven approaches into the 21st-century digitalization of the bioprocess industry. Moreover, the high demand for biotechnological products calls for efficient methods during research and development, as well as during tech transfer and routine manufacturing. In this regard, one promising tool is the use of digital twins, which offer a virtual representation of the bioprocess. They reflect the mechanistics of the biological system and the interactions between process parameters, key performance indicators and product quality attributes in the form of a mathematical process model. Furthermore, digital twins allow us to use computer-aided methods to gain an improved process understanding, to test and plan novel bioprocesses, and to efficiently monitor them. This book focuses on the application of digital twins in various contexts, e.g. computer-aided experimental design, seed train prediction, and lifeline analysis. Covering fundamentals as well as applications, the two volumes offers the ideal introduction to the topic for researchers in academy and industry alike.