Modeling and Simulation of Capsules and Biological Cells

Modeling and Simulation of Capsules and Biological Cells
Author: C. Pozrikidis
Publisher: CRC Press
Total Pages: 344
Release: 2003-05-28
Genre: Mathematics
ISBN: 0203503953

Download Modeling and Simulation of Capsules and Biological Cells Book in PDF, Epub and Kindle

In the past three decades, considerable progress has been made in the mathematical analysis, modelling, and simulation of the fluid dynamics of liquid capsules and biological cells, and interest in this area is now at an all-time high. This book features a collection of chapters contributed by acknowledged leaders in the field who explore topics re

Modeling and Simulation of Capsules and Biological Cells

Modeling and Simulation of Capsules and Biological Cells
Author: C. Pozrikidis
Publisher: Chapman and Hall/CRC
Total Pages: 344
Release: 2003-05-28
Genre: Mathematics
ISBN: 9781135440626

Download Modeling and Simulation of Capsules and Biological Cells Book in PDF, Epub and Kindle

In the past three decades, considerable progress has been made in the mathematical analysis, modelling, and simulation of the fluid dynamics of liquid capsules and biological cells, and interest in this area is now at an all-time high. This book features a collection of chapters contributed by acknowledged leaders in the field who explore topics related to the modeling and numerical simulation of capsule fluid dynamics and cell biomechanics. While providing an outstanding overview of the state of the art in selected areas of the subject, the authors also present the results of their own original research. A companion Web site holds useful links and additional information related to the topics discussed.

Three Dimensional Computational Modeling and Simulation of Biological Cells and Capsules

Three Dimensional Computational Modeling and Simulation of Biological Cells and Capsules
Author:
Publisher:
Total Pages: 175
Release: 2008
Genre: Blood cells
ISBN:

Download Three Dimensional Computational Modeling and Simulation of Biological Cells and Capsules Book in PDF, Epub and Kindle

Three-dimensional computational modeling and simulation are presented on the flow-induced motion of highly deformable particles which are representative of biological cells, such as red blood cells. We focus on the dynamics of capsules, that is, liquid drops surrounded by hyperelastic membranes. Unlike liquid drops where the fluid-fluid interface is characterized by isotropic surface tension, that for a capsule is governed by more complex constitutive laws. The numerical method is based on a front-tracking/immersed boundary method forcapsule deformation, and a finite-difference/fourier-transform method for the flow solver. The methodology is able to consider large deformation of capsules, capsule-capsule interaction, semi-dense suspension, and inertial effect. Using the simulation tool, we address a sequence of problems: (a) Capsule motion in wall-bounded pressure-driven flows: The motion of a capsule in a channel flow is investigated in absence of inertia and under large deformation. It is shown that a deformable capsule slowly drifts lateral to the flow and away from the wall while moving axially with the flow. Based on the theory of small deformation, and the present numerical results, an approximate expression for migration velocity under large deformation is developed. (b) Binary interaction in wall-bounded pressure-driven flows: Hydrodynamic interaction between two capsules in a channel flow is investigated in absence of inertia. Effect of wall proximity on the shear-induced diffusion process, in which one capsule rolls over the other, is studied for spherical and ellipsoidal resting shapes. (c) Effect of inertia on binary collision: Hydrodynamic interaction between two capsules in a linear shear flow is investigated in presence of inertia. The shear-induced diffusion process is shown to be absent. Instead, a new interaction mode is found in which the capsules engage in spiraling motion. (d) Simulation of semi-dense suspension: We then consider direct numerical simulations (DNS) of suspension of multiple capsules of spherical and biconcave resting shapes. Detailed analysis of the numerical results and their relevance to in vitro blood flow are presented. It is shown that the two-phase model of blood in microvessels underpredicts the DNS flow rate. We proceed to develop a three-layer model based on the microrheology extracted from the DNS, and show that it accurately predicts the DNS velocity.

Computational Hydrodynamics of Capsules and Biological Cells

Computational Hydrodynamics of Capsules and Biological Cells
Author: Constantine Pozrikidis
Publisher: CRC Press
Total Pages: 0
Release: 2010-06-02
Genre: Mathematics
ISBN: 9781439820056

Download Computational Hydrodynamics of Capsules and Biological Cells Book in PDF, Epub and Kindle

Spanning biological, mathematical, computational, and engineering sciences, computational biofluiddynamics addresses a diverse family of problems involving fluid flow inside and around living organisms, organs, tissue, biological cells, and other biological materials. Computational Hydrodynamics of Capsules and Biological Cells provides a comprehensive, rigorous, and current introduction to the fundamental concepts, mathematical formulation, alternative approaches, and predictions of this evolving field. In the first several chapters on boundary-element, boundary-integral, and immersed-boundary methods, the book covers the flow-induced deformation of idealized two-dimensional red blood cells in Stokes flow, capsules with spherical unstressed shapes based on direct and variational formulations, and cellular flow in domains with complex geometry. It also presents simulations of microscopic hemodynamics and hemorheology as well as results on the deformation of capsules and cells in dilute and dense suspensions. The book then describes a discrete membrane model where a surface network of viscoelastic links emulates the spectrin network of the cytoskeleton, before presenting a novel two-dimensional model of red and white blood cell motion. The final chapter discusses the numerical simulation of platelet motion near a wall representing injured tissue. This volume provides a roadmap to the current state of the art in computational cellular mechanics and biofluiddynamics. It also indicates areas for further work on mathematical formulation and numerical implementation and identifies physiological problems that need to be addressed in future research. MATLAB® code and other data are available at http://dehesa.freeshell.org/CC2

Modelling Organs, Tissues, Cells and Devices

Modelling Organs, Tissues, Cells and Devices
Author: Socrates Dokos
Publisher: Springer
Total Pages: 504
Release: 2017-03-08
Genre: Technology & Engineering
ISBN: 3642548016

Download Modelling Organs, Tissues, Cells and Devices Book in PDF, Epub and Kindle

This book presents a theoretical and practical overview of computational modeling in bioengineering, focusing on a range of applications including electrical stimulation of neural and cardiac tissue, implantable drug delivery, cancer therapy, biomechanics, cardiovascular dynamics, as well as fluid-structure interaction for modelling of organs, tissues, cells and devices. It covers the basic principles of modeling and simulation with ordinary and partial differential equations using MATLAB and COMSOL Multiphysics numerical software. The target audience primarily comprises postgraduate students and researchers, but the book may also be beneficial for practitioners in the medical device industry.

Computational Hydrodynamics of Capsules and Biological Cells

Computational Hydrodynamics of Capsules and Biological Cells
Author: Constantine Pozrikidis
Publisher: CRC Press
Total Pages: 328
Release: 2010-06-02
Genre: Mathematics
ISBN: 1439820066

Download Computational Hydrodynamics of Capsules and Biological Cells Book in PDF, Epub and Kindle

Spanning biological, mathematical, computational, and engineering sciences, computational biofluiddynamics addresses a diverse family of problems involving fluid flow inside and around living organisms, organs, tissue, biological cells, and other biological materials. Computational Hydrodynamics of Capsules and Biological Cells provides a comprehen

Python for Bioinformatics

Python for Bioinformatics
Author: Sebastian Bassi
Publisher: CRC Press
Total Pages: 510
Release: 2017-08-07
Genre: Mathematics
ISBN: 1351976958

Download Python for Bioinformatics Book in PDF, Epub and Kindle

In today's data driven biology, programming knowledge is essential in turning ideas into testable hypothesis. Based on the author’s extensive experience, Python for Bioinformatics, Second Edition helps biologists get to grips with the basics of software development. Requiring no prior knowledge of programming-related concepts, the book focuses on the easy-to-use, yet powerful, Python computer language. This new edition is updated throughout to Python 3 and is designed not just to help scientists master the basics, but to do more in less time and in a reproducible way. New developments added in this edition include NoSQL databases, the Anaconda Python distribution, graphical libraries like Bokeh, and the use of Github for collaborative development.

Big Data in Omics and Imaging

Big Data in Omics and Imaging
Author: Momiao Xiong
Publisher: CRC Press
Total Pages: 580
Release: 2018-06-14
Genre: Mathematics
ISBN: 135117262X

Download Big Data in Omics and Imaging Book in PDF, Epub and Kindle

Big Data in Omics and Imaging: Integrated Analysis and Causal Inference addresses the recent development of integrated genomic, epigenomic and imaging data analysis and causal inference in big data era. Despite significant progress in dissecting the genetic architecture of complex diseases by genome-wide association studies (GWAS), genome-wide expression studies (GWES), and epigenome-wide association studies (EWAS), the overall contribution of the new identified genetic variants is small and a large fraction of genetic variants is still hidden. Understanding the etiology and causal chain of mechanism underlying complex diseases remains elusive. It is time to bring big data, machine learning and causal revolution to developing a new generation of genetic analysis for shifting the current paradigm of genetic analysis from shallow association analysis to deep causal inference and from genetic analysis alone to integrated omics and imaging data analysis for unraveling the mechanism of complex diseases. FEATURES Provides a natural extension and companion volume to Big Data in Omic and Imaging: Association Analysis, but can be read independently. Introduce causal inference theory to genomic, epigenomic and imaging data analysis Develop novel statistics for genome-wide causation studies and epigenome-wide causation studies. Bridge the gap between the traditional association analysis and modern causation analysis Use combinatorial optimization methods and various causal models as a general framework for inferring multilevel omic and image causal networks Present statistical methods and computational algorithms for searching causal paths from genetic variant to disease Develop causal machine learning methods integrating causal inference and machine learning Develop statistics for testing significant difference in directed edge, path, and graphs, and for assessing causal relationships between two networks The book is designed for graduate students and researchers in genomics, epigenomics, medical image, bioinformatics, and data science. Topics covered are: mathematical formulation of causal inference, information geometry for causal inference, topology group and Haar measure, additive noise models, distance correlation, multivariate causal inference and causal networks, dynamic causal networks, multivariate and functional structural equation models, mixed structural equation models, causal inference with confounders, integer programming, deep learning and differential equations for wearable computing, genetic analysis of function-valued traits, RNA-seq data analysis, causal networks for genetic methylation analysis, gene expression and methylation deconvolution, cell –specific causal networks, deep learning for image segmentation and image analysis, imaging and genomic data analysis, integrated multilevel causal genomic, epigenomic and imaging data analysis.

Computational Exome and Genome Analysis

Computational Exome and Genome Analysis
Author: Peter N. Robinson
Publisher: CRC Press
Total Pages: 444
Release: 2017-09-13
Genre: Computers
ISBN: 1351650815

Download Computational Exome and Genome Analysis Book in PDF, Epub and Kindle

Exome and genome sequencing are revolutionizing medical research and diagnostics, but the computational analysis of the data has become an extremely heterogeneous and often challenging area of bioinformatics. Computational Exome and Genome Analysis provides a practical introduction to all of the major areas in the field, enabling readers to develop a comprehensive understanding of the sequencing process and the entire computational analysis pipeline.