Modeling and Simulation of a Hybrid Electric Vehicle for the Challenge X Competition

Modeling and Simulation of a Hybrid Electric Vehicle for the Challenge X Competition
Author: Michael Arnett
Publisher:
Total Pages:
Release: 2005
Genre:
ISBN:

Download Modeling and Simulation of a Hybrid Electric Vehicle for the Challenge X Competition Book in PDF, Epub and Kindle

Abstract: As the market shifts toward larger vehicles and growing concerns regarding petroleum consumption and emissions emerge, automakers have begun to explore new vehicle propulsion solutions. General Motors and The Department of Energy have joined together to create the Challenge X competition to explore hybrid-electric vehicles as one such solution. Seventeen teams across the United State will experience "real-world" HEV development over the three year competition. This process begins with vehicle architecture selection, modeling and simulation. A dynamic model of a hybrid-electric powertrain is developed here. This model is then implemented into two Simulink based simulators: the quasi-static cX-SIM, the dynamic cX-DYN. These simulators are used to validate the control strategy being developed for the Challenge X vehicle. Verification will include optimal performance in regards to fuel consumption, battery state-of-charge, and drivability. Techniques of validating the model and simulators using a rolling chassis are also being implemented. Preliminary data from the quasi-static simulator and the rolling chassis is presented herein.

Introduction to Hybrid Vehicle System Modeling and Control

Introduction to Hybrid Vehicle System Modeling and Control
Author: Wei Liu
Publisher: John Wiley & Sons
Total Pages: 428
Release: 2013-02-08
Genre: Transportation
ISBN: 1118407393

Download Introduction to Hybrid Vehicle System Modeling and Control Book in PDF, Epub and Kindle

This is an engineering reference book on hybrid vehicle system analysis and design, an outgrowth of the author's substantial work in research, development and production at the National Research Council Canada, Azure Dynamics and now General Motors. It is an irreplaceable tool for helping engineers develop algorithms and gain a thorough understanding of hybrid vehicle systems. This book covers all the major aspects of hybrid vehicle modeling, control, simulation, performance analysis and preliminary design. It not only systemically provides the basic knowledge of hybrid vehicle system configuration and main components, but also details their characteristics and mathematic models. Provides valuable technical expertise necessary for building hybrid vehicle system and analyzing performance via drivability, fuel economy and emissions Built from the author's industry experience at major vehicle companies including General Motors and Azure Dynamics Inc. Offers algorithm implementations and figures/examples extracted from actual practice systems Suitable for a training course on hybrid vehicle system development with supplemental materials An essential resource enabling hybrid development and design engineers to understand the hybrid vehicle systems necessary for control algorithm design and developments.

Modeling for Hybrid and Electric Vehicles Using Simscape

Modeling for Hybrid and Electric Vehicles Using Simscape
Author: Shuvra Das
Publisher: Springer Nature
Total Pages: 208
Release: 2022-06-01
Genre: Technology & Engineering
ISBN: 3031015088

Download Modeling for Hybrid and Electric Vehicles Using Simscape Book in PDF, Epub and Kindle

Automobiles have played an important role in the shaping of the human civilization for over a century and continue to play a crucial role today. The design, construction, and performance of automobiles have evolved over the years. For many years, there has been a strong shift toward electrification of automobiles. It started with the by-wire systems where more efficient electro-mechanical subsystems started replacing purely mechanical devices, e.g., anti-lock brakes, drive-by-wire, and cruise control. Over the last decade, driven by a strong push for fuel efficiency, pollution reduction, and environmental stewardship, electric and hybrid electric vehicles have become quite popular. In fact, almost all the automobile manufacturers have adopted strategies and launched vehicle models that are electric and/or hybrid. With this shift in technology, employers have growing needs for new talent in areas such as energy storage and battery technology, power electronics, electric motor drives, embedded control systems, and integration of multi-disciplinary systems. To support these needs, universities are adjusting their programs to train students in these new areas of expertise. For electric and hybrid technology to deliver superior performance and efficiency, all sub-systems have to work seamlessly and in unison every time and all the time. To ensure this level of precision and reliability, modeling and simulation play crucial roles during the design and development cycle of electric and hybrid vehicles. Simscape, a Matlab/Simulink toolbox for modeling physical systems, is an ideally suited platform for developing and deploying models for systems and sub-systems that are critical for hybrid and electric vehicles. This text will focus on guiding the reader in the development of models for all critical areas of hybrid and electric vehicles. There are numerous texts on electric and hybrid vehicles in the market right now. A majority of these texts focus on the relevant technology and the physics and engineering of their operation. In contrast, this text focuses on the application of some of the theories in developing models of physical systems that are at the core of hybrid and electric vehicles. Simscape is the tool of choice for the development of these models. Relevant background and appropriate theory are referenced and summarized in the context of model development with significantly more emphasis on the model development procedure and obtaining usable and accurate results.

Electric Vehicle Design

Electric Vehicle Design
Author: Krishan Arora
Publisher: John Wiley & Sons
Total Pages: 373
Release: 2024-04-18
Genre: Technology & Engineering
ISBN: 1394205074

Download Electric Vehicle Design Book in PDF, Epub and Kindle

ELECTRIC VEHICLE DESIGN This book will serve as a definitive guide to conceptual and practical knowledge about the design of hybrid electrical vehicles (HEV), battery electrical vehicles (BEV), fuel cell electrical vehicles (FCEV), plug-in hybrid electrical vehicles (PHEV), and efficient EV charging techniques with advanced tools and methodologies for students, engineers, and academics alike. This book deals with novel concepts related to fundamentals, design, and applications of conventional automobiles with internal combustion engines (ICEs), electric vehicles (EVs), hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs). It broadly covers vehicle performance, configuration, control strategy, design methodology, modeling, and simulation for different conventional and hybrid vehicles based on mathematical equations. Fundamental and practical examples of conventional electrical machines, advanced electrical machines, battery energy sources, on-board charging and off-board charging techniques, and optimization methods are presented here. This book can be useful for students, researchers, and practitioners interested in different problems and challenges associated with electric vehicles. Furthermore, in explaining the design methodology of each drive train, design examples are presented with simulation results.

Transient Effects in Simulations of Hybrid Electric Drivetrains

Transient Effects in Simulations of Hybrid Electric Drivetrains
Author: Florian Winke
Publisher: Springer
Total Pages: 140
Release: 2018-05-31
Genre: Technology & Engineering
ISBN: 3658225548

Download Transient Effects in Simulations of Hybrid Electric Drivetrains Book in PDF, Epub and Kindle

This work presents an investigation of the influence of different modeling approaches on the quality of fuel economy simulations of hybrid electric powertrains. The main focus is on the challenge to accurately include transient effects and reduce the computation time of complex models. Methods for the composition of entire powertrain models are analyzed as well as the modeling of the individual components internal combustion engine and battery. The results shall help with the selection of suitable models for specific simulation tasks and provide a deeper understanding of the dynamic processes within simulations of hybrid electric vehicles. About the Author Florian Winke was research associate at the Research Institute of Automotive Engineering and Vehicle Engines Stuttgart (FKFS), where he worked on modeling and simulation of hybrid electric powertrains. After finishing his doctorate, he joined a German automotive manufacturer, where he is working in software development in the field of hybrid operation strategies.

Modeling and Simulating a Performance Hybrid Electric Vehicle

Modeling and Simulating a Performance Hybrid Electric Vehicle
Author: Jason J. Ward
Publisher:
Total Pages:
Release: 2015
Genre:
ISBN:

Download Modeling and Simulating a Performance Hybrid Electric Vehicle Book in PDF, Epub and Kindle

As part of EcoCAR 3, an Advanced Vehicle Technology Competition, The Ohio State University is among sixteen teams challenged with the task of re-engineering a stock 2016 Chevrolet Camaro into a hybrid electric vehicle. Part of the Ohio State design process entails using model based design to develop a full vehicle model of the hybrid Camaro that can simulate energy consumption for various testing purposes. This thesis describes the design process behind developing the plant and control models, integrating everything together in a full vehicle model, performing fault insertion testing for mitigation development, and constructing the model architecture such that transfer between In-the-Loop platforms is easier than conventional methods. The full vehicle model developed will be refined and used by the Ohio State team throughout the four year EcoCAR 3 competition.

Hybrid Electric Vehicle System Modeling and Control

Hybrid Electric Vehicle System Modeling and Control
Author: Wei Liu
Publisher: John Wiley & Sons
Total Pages: 584
Release: 2017-04-17
Genre: Technology & Engineering
ISBN: 1119279321

Download Hybrid Electric Vehicle System Modeling and Control Book in PDF, Epub and Kindle

This new edition includes approximately 30% new materials covering the following information that has been added to this important work: extends the contents on Li-ion batteries detailing the positive and negative electrodes and characteristics and other components including binder, electrolyte, separator and foils, and the structure of Li-ion battery cell. Nickel-cadmium batteries are deleted. adds a new section presenting the modelling of multi-mode electrically variable transmission, which gradually became the main structure of the hybrid power-train during the last 5 years. newly added chapter on noise and vibration of hybrid vehicles introduces the basics of vibration and noise issues associated with power-train, driveline and vehicle vibrations, and addresses control solutions to reduce the noise and vibration levels. Chapter 10 (chapter 9 of the first edition) is extended by presenting EPA and UN newly required test drive schedules and test procedures for hybrid electric mileage calculation for window sticker considerations. In addition to the above major changes in this second edition, adaptive charging sustaining point determination method is presented to have a plug-in hybrid electric vehicle with optimum performance.

High-level Modeling, Supervisory Control Strategy Development, and Validation for a Proposed Power-split Hybrid-electric Vehicle Design

High-level Modeling, Supervisory Control Strategy Development, and Validation for a Proposed Power-split Hybrid-electric Vehicle Design
Author: Joseph M. Morbitzer
Publisher:
Total Pages: 0
Release: 2005
Genre: Hybrid electric vehicles
ISBN:

Download High-level Modeling, Supervisory Control Strategy Development, and Validation for a Proposed Power-split Hybrid-electric Vehicle Design Book in PDF, Epub and Kindle

Over the last decade, hybrid-electric vehicles have progressed from a futuristic icon to a firm production reality for a growing number of automobile manufacturers. While the motivation for this trend may vary, hybrid-electric vehicles today symbolize a recognition of the necessity to evolve advanced automotive technologies in order to sustain a culture of freedom of mobility. The Challenge X program communicates this message towards academia and future automotive engineers with strong support from both government and industry. The work of this thesis was aimed toward The Ohio State University's objectives as a participant in the Challenge X competition. As an initial task, the Ohio State team defined a set of vehicle technical specifications to steer and motivate the vehicle design and control strategy development. After an extensive decision-making process, a specific architecture emerged with the potential to meet the vehicle technical specifications. The chosen configuration is a charge-sustaining, power-split, hybrid-electric vehicle design. A downsized Diesel engine and integrated starter/alternator drive the front wheels through an automatic transaxle. A larger, tractive electric machine and single-speed gearbox exist on the rear drivetrain. Both electric machines and their respective inverters connect electrically to a single high-voltage battery pack. The validation procedure for both the vehicle architecture and a control strategy involves use of a computer vehicle simulator. A quasi-static vehicle model acts as a basis for a simulator to validate the design and control strategy with respect to energy management. A dynamic vehicle model establishes a foundation for eventual creation of a second simulator for drivability validation. Both simulators operate in a forward-moving fashion and contain three primary sections: (i) the driver, (ii) the hybrid-electric powertrain, and (iii) the vehicle. Both models are also highly nonlinear, but the main differentiating property is the relatively large system order of the dynamic model as compared to the quasi-static model. The high-level supervisory control strategy strives to accomplish certain objectives. The initial task involves appropriately selecting the vehicle mode from those predefined as being advantageous to the particular architecture. The control strategy then calculates the driver power request and commands the powertrain actuators so as to meet that request. In certain and applicable vehicle modes, the torque split also aims to minimize fuel consumption. High-voltage battery pack state-of-charge management is both indirectly and inherently incorporated into the fuel consumption minimization approach. As a future task, drivability assurance may involve a final adjustment of control strategy commands so as to respect certain levels of several identified drivability metrics during the vehicle response. Rapid prototyping with a rolling chassis apparatus provided a method of investigation into the pragmaticality of solely utilizing the tractive electric machine and high-voltage battery pack for vehicle propulsion. Initial experimentation validates functionality of the electric machine and inverter and also indicates potential for the power electronics system to act alone in acceptably accelerating the vehicle inertia from a rest. More revealing analysis of the vehicle architecture and control strategy occurred via software-in-the-loop techniques using a simulator based upon the quasi-static vehicle model. Simulation results verify expected fuel economy gains from conversion to a downsized Diesel engine, engine disablement at a vehicle rest, and regenerative braking. However, the simulator also demonstrates a reduced fuel economy from extended operation of the vehicle in a pure electric mode. Moreover, the simulator indicates a concern with the ability of the tractive electric machine and proposed high-voltage battery pack to sufficiently and solely power the vehicle in a pure electric mode. Further findings of the simulated vehicle in full hybrid-electric vehicle operation clearly reveal the control strategy's preference in exclusively relying upon the Diesel engine for most normal operation. Reasons for this behavior primarily result from the relatively high efficiency of the Diesel engine and ensuing lack of opportunity to improve overall system efficiency through engine load shifting. Still, the downsized engine necessitates some presence of power electronics for supplementation during large power requests. Therefore, for this particular vehicle architecture, the control strategy may be better suited to simply maintain sufficient charge of the high-voltage battery pack for supplemental power delivery as opposed to aggressive and frequent use of the electric machines. Reflection of these simulation results along with some certain intangible issues motivates several suggestions concerning a few particular potential vehicle architecture modifications for consideration and contemplation by the Ohio State Challenge X team.