Modeling and Control of Electronic Throttle Drive

Modeling and Control of Electronic Throttle Drive
Author: Danijel Pavkovi
Publisher: LAP Lambert Academic Publishing
Total Pages: 188
Release: 2011
Genre:
ISBN: 9783844316285

Download Modeling and Control of Electronic Throttle Drive Book in PDF, Epub and Kindle

The automotive drive-by-wire or electronic throttle system has facilitated notable improvements in fuel economy of internal combustion engines and enhanced performance of other vehicle systems such as automatic transmissions and traction control systems. The book presents a comprehensive and experimentally verified approach to modeling, identification, and position control of the electronic throttle DC drive. Since the electronic throttle is characterized by notable nonlinear effects due to gearbox friction and a dual return spring, and is also subject to production deviations and parameter variations, special attention is given to compensation of friction and return spring nonlinearities, and on-line adaptation of the control system. The overall nonlinear control strategy is embedded and experimentally examined within a spark-ignition engine idle speed control system. The book may be useful for researchers and practitioners within the fields of automotive systems and industrial servodrives, as well as to engineering educators dealing with electrical servodrives, automotive mechatronics, and control system applications.

Introduction to Modeling and Control of Internal Combustion Engine Systems

Introduction to Modeling and Control of Internal Combustion Engine Systems
Author: Lino Guzzella
Publisher: Springer Science & Business Media
Total Pages: 362
Release: 2009-12-21
Genre: Technology & Engineering
ISBN: 3642107753

Download Introduction to Modeling and Control of Internal Combustion Engine Systems Book in PDF, Epub and Kindle

Internal combustion engines (ICE) still have potential for substantial improvements, particularly with regard to fuel efficiency and environmental compatibility. In order to fully exploit the remaining margins, increasingly sophisticated control systems have to be applied. This book offers an introduction to cost-effective model-based control-system design for ICE. The primary emphasis is put on the ICE and its auxiliary devices. Mathematical models for these processes are developed and solutions for selected feedforward and feedback control-problems are presented. The discussions concerning pollutant emissions and fuel economy of ICE in automotive applications constantly intensified since the first edition of this book was published. Concerns about the air quality, the limited resources of fossil fuels and the detrimental effects of greenhouse gases exceedingly spurred the interest of both the industry and academia in further improvements. The most important changes and additions included in this second edition are: restructured and slightly extended section on superchargers, short subsection on rotational oscillations and their treatment on engine test-benches, complete section on modeling, detection, and control of engine knock, improved physical and chemical model for the three-way catalytic converter, new methodology for the design of an air-to-fuel ratio controller, short introduction to thermodynamic engine-cycle calculation and corresponding control-oriented aspects.

Modeling and Control of Engines and Drivelines

Modeling and Control of Engines and Drivelines
Author: Lars Eriksson
Publisher: John Wiley & Sons
Total Pages: 589
Release: 2014-04-07
Genre: Technology & Engineering
ISBN: 1118479998

Download Modeling and Control of Engines and Drivelines Book in PDF, Epub and Kindle

Control systems have come to play an important role in the performance of modern vehicles with regards to meeting goals on low emissions and low fuel consumption. To achieve these goals, modeling, simulation, and analysis have become standard tools for the development of control systems in the automotive industry. Modeling and Control of Engines and Drivelines provides an up-to-date treatment of the topic from a clear perspective of systems engineering and control systems, which are at the core of vehicle design. This book has three main goals. The first is to provide a thorough understanding of component models as building blocks. It has therefore been important to provide measurements from real processes, to explain the underlying physics, to describe the modeling considerations, and to validate the resulting models experimentally. Second, the authors show how the models are used in the current design of control and diagnosis systems. These system designs are never used in isolation, so the third goal is to provide a complete setting for system integration and evaluation, including complete vehicle models together with actual requirements and driving cycle analysis. Key features: Covers signals, systems, and control in modern vehicles Covers the basic dynamics of internal combustion engines and drivelines Provides a set of standard models and includes examples and case studies Covers turbo- and super-charging, and automotive dependability and diagnosis Accompanied by a web site hosting example models and problems and solutions Modeling and Control of Engines and Drivelines is a comprehensive reference for graduate students and the authors’ close collaboration with the automotive industry ensures that the knowledge and skills that practicing engineers need when analysing and developing new powertrain systems are also covered.

Hybrid Electric Vehicle System Modeling and Control

Hybrid Electric Vehicle System Modeling and Control
Author: Wei Liu
Publisher: John Wiley & Sons
Total Pages: 702
Release: 2017-01-25
Genre: Technology & Engineering
ISBN: 1119278945

Download Hybrid Electric Vehicle System Modeling and Control Book in PDF, Epub and Kindle

This new edition includes approximately 30% new materials covering the following information that has been added to this important work: extends the contents on Li-ion batteries detailing the positive and negative electrodes and characteristics and other components including binder, electrolyte, separator and foils, and the structure of Li-ion battery cell. Nickel-cadmium batteries are deleted. adds a new section presenting the modelling of multi-mode electrically variable transmission, which gradually became the main structure of the hybrid power-train during the last 5 years. newly added chapter on noise and vibration of hybrid vehicles introduces the basics of vibration and noise issues associated with power-train, driveline and vehicle vibrations, and addresses control solutions to reduce the noise and vibration levels. Chapter 10 (chapter 9 of the first edition) is extended by presenting EPA and UN newly required test drive schedules and test procedures for hybrid electric mileage calculation for window sticker considerations. In addition to the above major changes in this second edition, adaptive charging sustaining point determination method is presented to have a plug-in hybrid electric vehicle with optimum performance.

Modeling and Dynamics Control for Distributed Drive Electric Vehicles

Modeling and Dynamics Control for Distributed Drive Electric Vehicles
Author: Xudong Zhang
Publisher: Springer Nature
Total Pages: 221
Release: 2021-01-08
Genre: Technology & Engineering
ISBN: 3658322136

Download Modeling and Dynamics Control for Distributed Drive Electric Vehicles Book in PDF, Epub and Kindle

Due to the improvements on electric motors and motor control technology, alternative vehicle power system layouts have been considered. One of the latest is known as distributed drive electric vehicles (DDEVs), which consist of four motors that are integrated into each drive and can be independently controllable. Such an innovative design provides packaging advantages, including short transmission chain, fast and accurate torque response, and so on. Based on these advantages and features, this book takes stability and energy-saving as cut-in points, and conducts investigations from the aspects of Vehicle State Estimation, Direct Yaw Moment Control (DYC), Control Allocation (CA). Moreover, lots of advanced algorithms, such as general regression neural network, adaptive sliding mode control-based optimization, as well as genetic algorithms, are applied for a better control performance.

Electric Motor Drives

Electric Motor Drives
Author: Ramu Krishnan
Publisher:
Total Pages: 626
Release: 2001
Genre: Electric driving
ISBN: 9780130930675

Download Electric Motor Drives Book in PDF, Epub and Kindle

Mechanics and Model-Based Control of Smart Materials and Structures

Mechanics and Model-Based Control of Smart Materials and Structures
Author: Hans Irschik
Publisher: Springer Science & Business Media
Total Pages: 222
Release: 2009-09-30
Genre: Technology & Engineering
ISBN: 321199484X

Download Mechanics and Model-Based Control of Smart Materials and Structures Book in PDF, Epub and Kindle

Mechanics and model-based control are both rapidly expanding scientific fields and fundamental disciplines of mechatronics, sharing demanding mathematical and system-theoretic formulations and methods. The papers in this volume deal with smart materials, which allow the design and implementation of new types of actuator/sensor fields and networks. Main topics treated are fundamental studies on laminated, composite and functionally graded materials, thermal and piezoelectric actuation, active and passive damping, as well as vibrations and waves in smart structures. The book is based on the 1st Japanese-Austrian Workshop which took place in Linz in Fall 2008.

Advanced Control of Electrical Drives and Power Electronic Converters

Advanced Control of Electrical Drives and Power Electronic Converters
Author: Jacek Kabziński
Publisher: Springer
Total Pages: 391
Release: 2016-09-30
Genre: Technology & Engineering
ISBN: 3319457357

Download Advanced Control of Electrical Drives and Power Electronic Converters Book in PDF, Epub and Kindle

This contributed volume is written by key specialists working in multidisciplinary fields in electrical engineering, linking control theory, power electronics, artificial neural networks, embedded controllers and signal processing. The authors of each chapter report the state of the art of the various topics addressed and present results of their own research, laboratory experiments and successful applications. The presented solutions concentrate on three main areas of interest: · motion control in complex electromechanical systems, including sensorless control; · fault diagnosis and fault tolerant control of electric drives; · new control algorithms for power electronics converters. The chapters and the complete book possess strong monograph attributes. Important practical and theoretical problems are deeply and accurately presented on the background of an exhaustive state-of the art review. Many results are completely new and were never published before. Well-known control methods like field oriented control (FOC) or direct torque control (DTC) are referred as a starting point for modifications or are used for comparison. Among numerous control theories used to solve particular problems are: nonlinear control, robust control, adaptive control, Lyapunov techniques, observer design, model predictive control, neural control, sliding mode control, signal filtration and processing, fault diagnosis, and fault tolerant control.

Advanced Electrical Drives

Advanced Electrical Drives
Author: Rik De Doncker
Publisher: Springer Science & Business Media
Total Pages: 462
Release: 2010-11-30
Genre: Technology & Engineering
ISBN: 9400701810

Download Advanced Electrical Drives Book in PDF, Epub and Kindle

Electrical drives convert in a controlled manner, electrical energy into mechanical energy. Electrical drives comprise an electrical machine, i.e. an electro-mechanical energy converter, a power electronic converter, i.e. an electrical-to-electrical converter, and a controller/communication unit. Today, electrical drives are used as propulsion systems in high-speed trains, elevators, escalators, electric ships, electric forklift trucks and electric vehicles. Advanced control algorithms (mostly digitally implemented) allow torque control over a high-bandwidth. Hence, precise motion control can be achieved. Examples are drives in robots, pick-and-place machines, factory automation hardware, etc. Most drives can operate in motoring and generating mode. Wind turbines use electrical drives to convert wind energy into electrical energy. More and more, variable speed drives are used to save energy for example, in air-conditioning units, compressors, blowers, pumps and home appliances. Key to ensure stable operation of a drive in the aforementioned applications are torque control algorithms. In Advanced Electrical Drives, a unique approach is followed to derive model based torque controllers for all types of Lorentz force machines, i.e. DC, synchronous and induction machines. The rotating transformer model forms the basis for this generalized modeling approach that ultimately leads to the development of universal field-oriented control algorithms. In case of switched reluctance machines, torque observers are proposed to implement direct torque algorithms. From a didactic viewpoint, tutorials are included at the end of each chapter. The reader is encouraged to execute these tutorials to familiarize him or herself with all aspects of drive technology. Hence, Advanced Electrical Drives encourages “learning by doing”. Furthermore, the experienced drive specialist may find the simulation tools useful to design high-performance controllers for all sorts of electrical drives.

Model-based Predictive Control of Electric Drives

Model-based Predictive Control of Electric Drives
Author: Ralph Kennel
Publisher: Cuvillier
Total Pages: 0
Release: 2010
Genre:
ISBN: 9783869553986

Download Model-based Predictive Control of Electric Drives Book in PDF, Epub and Kindle

For more than 20 years, the so-called field-oriented control is standard for controlled electric drive systems. Until now, the strategies based on this method fulfill completely the requirements of drive technology. However, due to the system characteristics, an arbitrary improvement of the controller properties is not possible. Predictive or precalculating control methods which need no controller cascade are an alternative. Main focus of this work is to examine model-based predictive controllers for their applicability in drive technology. These methods with their high prediction horizon are well-known from classic control theory and in process engineering they are applied with great success. Several strategies are presented, explained and evaluated, whereas, at the same time, the interested reader gets advice for the implementation of these methods. Since model-based predictive control is, until now, not very common in drive technology, this work also includes detailed derivations of the control algorithms.