Stratosphere Troposphere Interactions

Stratosphere Troposphere Interactions
Author: K. Mohanakumar
Publisher: Springer Science & Business Media
Total Pages: 424
Release: 2008-07-03
Genre: Science
ISBN: 1402082177

Download Stratosphere Troposphere Interactions Book in PDF, Epub and Kindle

Stratospheric processes play a signi?cant role in regulating the weather and c- mate of the Earth system. Solar radiation, which is the primary source of energy for the tropospheric weather systems, is absorbed by ozone when it passes through the stratosphere, thereby modulating the solar-forcing energy reaching into the t- posphere. The concentrations of the radiatively sensitive greenhouse gases present in the lower atmosphere, such as water vapor, carbon dioxide, and ozone, control the radiation balance of the atmosphere by the two-way interaction between the stratosphere and troposphere. The stratosphere is the transition region which interacts with the weather s- tems in the lower atmosphere and the richly ionized upper atmosphere. Therefore, this part of the atmosphere provides a long list of challenging scienti?c problems of basic nature involving its thermal structure, energetics, composition, dynamics, chemistry, and modeling. The lower stratosphere is very much linked dynamically, radiatively,and chemically with the upper troposphere,even though the temperature characteristics of these regions are different. The stratosphere is a region of high stability, rich in ozone and poor in water - por and temperature increases with altitude. The lower stratospheric ozone absorbs the harmful ultraviolet (UV) radiation from the sun and protects life on the Earth. On the other hand, the troposphere has high concentrations of water vapor, is low in ozone, and temperature decreases with altitude. The convective activity is more in the troposphere than in the stratosphere.

Stratosphere Troposphere Interactions

Stratosphere Troposphere Interactions
Author: K. Mohanakumar
Publisher: Springer Science & Business Media
Total Pages: 424
Release: 2008-07-03
Genre: Science
ISBN: 1402082169

Download Stratosphere Troposphere Interactions Book in PDF, Epub and Kindle

Stratospheric processes play a signi?cant role in regulating the weather and c- mate of the Earth system. Solar radiation, which is the primary source of energy for the tropospheric weather systems, is absorbed by ozone when it passes through the stratosphere, thereby modulating the solar-forcing energy reaching into the t- posphere. The concentrations of the radiatively sensitive greenhouse gases present in the lower atmosphere, such as water vapor, carbon dioxide, and ozone, control the radiation balance of the atmosphere by the two-way interaction between the stratosphere and troposphere. The stratosphere is the transition region which interacts with the weather s- tems in the lower atmosphere and the richly ionized upper atmosphere. Therefore, this part of the atmosphere provides a long list of challenging scienti?c problems of basic nature involving its thermal structure, energetics, composition, dynamics, chemistry, and modeling. The lower stratosphere is very much linked dynamically, radiatively,and chemically with the upper troposphere,even though the temperature characteristics of these regions are different. The stratosphere is a region of high stability, rich in ozone and poor in water - por and temperature increases with altitude. The lower stratospheric ozone absorbs the harmful ultraviolet (UV) radiation from the sun and protects life on the Earth. On the other hand, the troposphere has high concentrations of water vapor, is low in ozone, and temperature decreases with altitude. The convective activity is more in the troposphere than in the stratosphere.

Frontiers of Climate Modeling

Frontiers of Climate Modeling
Author: J. T. Kiehl
Publisher: Cambridge University Press
Total Pages: 410
Release: 2011-06-30
Genre: Science
ISBN: 9781139453233

Download Frontiers of Climate Modeling Book in PDF, Epub and Kindle

The physics and dynamics of the atmosphere and atmosphere-ocean interactions provide the foundation of modern climate models, upon which our understanding of the chemistry and biology of ocean and land surface processes are built. Originally published in 2006, Frontiers of Climate Modeling captures developments in modeling the atmosphere, and their implications for our understanding of climate change, whether due to natural or anthropogenic causes. Emphasis is on elucidating how greenhouse gases and aerosols are altering the radiative forcing of the climate system and the sensitivity of the system to such perturbations. An expert team of authors address key aspects of the atmospheric greenhouse effect, clouds, aerosols, atmospheric radiative transfer, deep convection dynamics, large scale ocean dynamics, stratosphere-troposphere interactions, and coupled ocean-atmosphere model development. The book is an important reference for researchers and advanced students interested in the forces driving the climate system and how they are modeled by climate scientists.

Sub-seasonal to Seasonal Prediction

Sub-seasonal to Seasonal Prediction
Author: Andrew Robertson
Publisher: Elsevier
Total Pages: 588
Release: 2018-10-19
Genre: Science
ISBN: 012811715X

Download Sub-seasonal to Seasonal Prediction Book in PDF, Epub and Kindle

The Gap Between Weather and Climate Forecasting: Sub-seasonal to Seasonal Prediction is an ideal reference for researchers and practitioners across the range of disciplines involved in the science, modeling, forecasting and application of this new frontier in sub-seasonal to seasonal (S2S) prediction. It provides an accessible, yet rigorous, introduction to the scientific principles and sources of predictability through the unique challenges of numerical simulation and forecasting with state-of-science modeling codes and supercomputers. Additional coverage includes the prospects for developing applications to trigger early action decisions to lessen weather catastrophes, minimize costly damage, and optimize operator decisions. The book consists of a set of contributed chapters solicited from experts and leaders in the fields of S2S predictability science, numerical modeling, operational forecasting, and developing application sectors. The introduction and conclusion, written by the co-editors, provides historical perspective, unique synthesis and prospects, and emerging opportunities in this exciting, complex and interdisciplinary field. Contains contributed chapters from leaders and experts in sub-seasonal to seasonal science, forecasting and applications Provides a one-stop shop for graduate students, academic and applied researchers, and practitioners in an emerging and interdisciplinary field Offers a synthesis of the state of S2S science through the use of concrete examples, enabling potential users of S2S forecasts to quickly grasp the potential for application in their own decision-making Includes a broad set of topics, illustrated with graphic examples, that highlight interdisciplinary linkages

Stratosphere - Troposphere Interaction During Stratospheric Sudden Warming Events

Stratosphere - Troposphere Interaction During Stratospheric Sudden Warming Events
Author: Daniela Iris Vera Domeisen
Publisher:
Total Pages: 192
Release: 2012
Genre:
ISBN:

Download Stratosphere - Troposphere Interaction During Stratospheric Sudden Warming Events Book in PDF, Epub and Kindle

The stratosphere and the troposphere exhibit a strong coupling during the winter months. However, the coupling mechanisms between the respective vertical layers are not fully understood. An idealized spectral core dynamical model is utilized in the present study in order to clarify the coupling timing, location and mechanisms. Since the coupling between the winter stratosphere and troposphere is strongly intensified during times of strong stratospheric variability such as stratospheric warmings, these events are simulated in the described model for the study of stratosphere - troposphere coupling, while for comparison the coupling is also assessed for weaker stratospheric variability. While the upward coupling by planetary-scale Rossby waves in the Northern Hemisphere is well understood, the Southern Hemisphere exhibits traveling wave patterns with a weaker impact on the stratospheric ow. However the tropospheric generation mechanism of these waves is not well understood and is investigated in this study. It is found that in the model atmosphere without a zonally asymmetric wave forcing, traveling waves are unable to induce a significant wave ux into the stratosphere. In the absence of synoptic eddy activity, however, the tropospheric ow is baroclinically unstable to planetary-scale waves, and the generated planetary waves are able to propagate into the stratosphere and induce sudden warmings comparable in frequency and strength to the Northern Hemisphere. While baroclinic instability of long waves may be further strengthened by the addition of moisture, the real atmosphere also exhibits strong synoptic eddy activity, and it will have to be further explored if the atmosphere exhibits periods where synoptic eddies are weak enough to allow for baroclinic instability of long waves. In order to further investigate the coupling between the stratosphere and the troposphere, cases of strong coupling are investigated in the analysis of a Northern Hemisphere - like winter atmosphere. A realistic frequency and strength of sudden warmings is obtained using a zonal wave-2 topographic forcing. An angular momentum budget analysis yields that the Eliassen-Palm (EP) flux is closely balanced by the residual circulation dominated by the Coriolis term on a daily basis, while the change in zonal wind is a small residual between these dominant terms. In the stratosphere, the EP flux term and the Coriolis term balance well in time but not exactly in magnitude, yielding a polar stratospheric weakening of the zonal mean wind as observed during stratospheric warmings. In the troposphere, the loss of angular momentum before a sudden warming induces a weak negative annular mode response, which is amplified by the downward propagating signal about three weeks after the sudden warming. The angular momentum budget does not reveal the mechanism of downward influence, but it nevertheless clarifies the momentum balance of the stratosphere - troposphere system, indicating that the effects of the waves and the residual circulation have to be considered at the same time. Since the annular mode response cannot be directly investigated using the angular momentum budget, the annular mode coupling between the stratosphere and the troposphere is further investigated using a statistical approach. The annular mode response is often framed in terms of Empirical Orthogonal Functions (EOFs), but it is here found that for the stratosphere - troposphere system with its strong vertical pressure gradient, EOFs are strongly dependent on the weighting of the data, while Principal Oscillation Patterns (POPs) are considerably less sensitive to an applied weighting while returning the dominant structures of variability. This encourages further research and application of POP modes for the use of stratosphere - troposphere coupling. These findings represent an improvement of the understanding of stratosphere - troposphere coupling and the results are another step in the direction of finding the mechanism of stratosphere - troposphere coupling and the downward influence after the occurrence of a stratospheric sudden warming, which may influence long-term weather prediction in the troposphere.

Middle Atmosphere

Middle Atmosphere
Author: PLUMB
Publisher: Birkhäuser
Total Pages: 465
Release: 2013-11-21
Genre: Science
ISBN: 3034858256

Download Middle Atmosphere Book in PDF, Epub and Kindle

PAGEOPH, stratosphere, these differences provide us with new evidence, interpretation of which can materially help to advance our understanding of stratospheric dynamics in general. It is now weil established that smaller-scale motions-in particular gravity waves and turbulence-are of fundamental importance in the general circulation of the mesosphere; they seem to be similarly, if less spectacularly, significant in the troposphere, and probably also in the stratosphere. Our understanding of these motions, their effects on the mean circulation and their mutual interactions is progressing rapidly, as is weil illustrated by the papers in this issue; there are reports of observational studies, especially with new instruments such as the Japanese MV radar, reviews of the state of theory, a laboratory study and an analysis of gravity waves and their effects in the high resolution "SKYHI" general circulation model. There are good reasons to suspect that gravity waves may be of crucial significance in making the stratospheric circulation the way it is (modeling experience being one suggestive piece of evidence for this). Direct observational proof has thus far been prevented by the difficulty of making observations of such scales of motion in this region; in one study reported here, falling sphere observations are used to obtain information on the structure and intensity of waves in the upper stratosphere.

Dynamic Interactions Between the Troposphere and Stratosphere

Dynamic Interactions Between the Troposphere and Stratosphere
Author: James Paul Koermer
Publisher:
Total Pages: 200
Release: 1980
Genre: Stratosphere
ISBN:

Download Dynamic Interactions Between the Troposphere and Stratosphere Book in PDF, Epub and Kindle

A primitive equation spectral model using spherical harmonics is formulated to study interactions between the troposphere and stratosphere in association with sudden stratospheric warmings. In order to follow vertical wave propagation so important to this process, the model consists of 31 levels with 5 in the troposphere and the other 26 in the stratosphere and mesosphere. Using sigma coordinates for the former and log-pressure coordinates for the latter, separate equations for each system are combined to form a single matrix governing equations. The gradual introduction of planetry scale topography to an initially balanced state representative of observed mean winter conditions in the Northern Hemisphere is used to force changes in the initial field during 40 day time integrations. Utilizing the same initial tropospheric conditions, three cases were run. The first case started with a weak polar night jet in the stratosphere and mesosphere. The second case had a much stronger polar vortex. For the third case, a lid was placed on the troposphere and no interaction was allowed with the atmosphere at higher levels. Results of these integrations indicate that realistic stratospheric warmings can be simulated by simple orographic forcing.

A Study of Stratosphere-troposphere Coupling with an Aquaplanet Model

A Study of Stratosphere-troposphere Coupling with an Aquaplanet Model
Author: Jacob Ching Ho Cheung
Publisher:
Total Pages:
Release: 2012
Genre:
ISBN:

Download A Study of Stratosphere-troposphere Coupling with an Aquaplanet Model Book in PDF, Epub and Kindle

The coupling between stratosphere and troposphere (ST) has been studied extensively using simple circulation models. It is known that the ozone- rich stratosphere interact with the troposphere through both radiative and dynamical processes. However, many of the models used in these studies only assume a slab ocean with a fixed sea surface temperature (SST) profile. To investigate the role of the ocean in the stratosphere-troposphere coupling, a fully coupled atmosphere-ocean model, FORTE (Fast Ocean Rapid Troposphere Experiment) is used in this study. In this project the Earth is modelled as a perfect sphere with its surface covered with water. In the first set of our experiments we introduce a perturbation to the stratosphere by increasing ozone concentration by a factor of five. In the second experiment we repeat the ozone perturbation experiment with a fixed SST profile such that the atmosphere-ocean coupling is shut off. Our results demonstrate that by including a dynamical ocean, the strength of the jet streams is less sensitive to stratospheric ozone perturbations whereas the extent of their latitudinal displacements is greater. Both of these are found to be a consequence of SST anomalies induced by ocean dynamics. On the other hand, our results show that in the presence of an interactive ocean, there is a general increase in tropospheric air temperature except for polar regions, while lacking the banded anomaly pattern observed in our fixed SST experiment and other ST coupling studies.