Model Based and Intelligent Monitoring and Control of Lithium-ion Batteries

Model Based and Intelligent Monitoring and Control of Lithium-ion Batteries
Author: Mohammad Foad Samadi
Publisher:
Total Pages: 130
Release: 2016
Genre:
ISBN:

Download Model Based and Intelligent Monitoring and Control of Lithium-ion Batteries Book in PDF, Epub and Kindle

Increased concerns over the limited sources of energy and environmental impact of the petroleum-based transportation infrastructure have led to increasing interest in an electric transportation infrastructure. Thus, electrical vehicles (including electric vehicle (EV), hybrid electric vehicle (HEV), and plug-in hybrid electric vehicle (PHEV)) and related issues have gained a great deal of attention. Battery technology and battery management is a key component in this regard and has indeed remained as a central challenge in vehicle electrification. This thesis deals with monitoring and control of Lithium ion batteries. The objective is to provide novel solutions to some of the challenging issues from a control theoretic perspective. The research stream in this thesis is headed towards three general directions, i.e. monitoring, diagnostics, and control. The proposed monitoring approaches are introduced as model-based and data-based approaches. The main objective in model-based approaches is to employ the high-fidelity physics-based models of the battery for monitoring. In this thesis, two particle-filtering methods are proposed for state, and joint state and parameter estimation of such models. The data based approaches try to come up with new ideas to monitor the battery accurately but with minimum computational load. In this regard, two different approaches are considered. A Takagi-Sugeno fuzzy model is developed for Li-ion battery where by the virtue of multiple-model structure of T-S model, the non-linearities of battery dynamics and corresponding parameters can appropriately be accounted for, while keeping the local models linear and easy-to-implement control/estimation algorithms. As a completely different alternative, the "Dynamic Resistance" concept is introduced that is sensitive to the battery state of charge and aging. This parameter considers changes in states of active materials in the cell during charge and discharge as well as overall interface resistances that may develop during cell aging. It can bring a new dimension to battery monitoring by providing a new easy-to-monitor parameter where the aging of the battery is also taken into account. This parameter is modeled versus the state of charge and total power throughput of the battery using a Group Method of Data Handling (GMDH) neural network and the model is used to monitor the state of charge and state of health of the battery. A reliable fault diagnosis system for batteries can play an important role in enhanced performance and reliability of electric-based transportation. In this thesis, the physics of the problem is rather comprehensively reviewed, and some of the proposed models for failure mechanism are presented and some fault-detection algorithms for some common failure mechanism are developed. Finally, over-charge/discharge of the cells within a battery pack can affect the battery's health significantly, and would pose serious safety concerns as well. Thus, a cell balancing circuit is usually employed in battery packs in order to keep all the cells in balance. In this thesis, the control problem of a cell-balancing circuit, which is essentially a switched hybrid system, is addressed in a model-based framework by proposing a nonlinear model predictive control (NMPC) strategy.

Battery System Modeling

Battery System Modeling
Author: Shunli Wang
Publisher: Elsevier
Total Pages: 356
Release: 2021-06-23
Genre: Science
ISBN: 0323904335

Download Battery System Modeling Book in PDF, Epub and Kindle

Battery System Modeling provides advances on the modeling of lithium-ion batteries. Offering step-by-step explanations, the book systematically guides the reader through the modeling of state of charge estimation, energy prediction, power evaluation, health estimation, and active control strategies. Using applications alongside practical case studies, each chapter shows the reader how to use the modeling tools provided. Moreover, the chemistry and characteristics are described in detail, with algorithms provided in every chapter. Providing a technical reference on the design and application of Li-ion battery management systems, this book is an ideal reference for researchers involved in batteries and energy storage. Moreover, the step-by-step guidance and comprehensive introduction to the topic makes it accessible to audiences of all levels, from experienced engineers to graduates. Explains how to model battery systems, including equivalent, electrical circuit and electrochemical nernst modeling Includes comprehensive coverage of battery state estimation methods, including state of charge estimation, energy prediction, power evaluation and health estimation Provides a dedicated chapter on active control strategies

Artificial Intelligence Applications in Battery Management Systems and Routing Problems in Electric Vehicles

Artificial Intelligence Applications in Battery Management Systems and Routing Problems in Electric Vehicles
Author: Angalaeswari, S.
Publisher: IGI Global
Total Pages: 363
Release: 2023-02-10
Genre: Technology & Engineering
ISBN: 1668466333

Download Artificial Intelligence Applications in Battery Management Systems and Routing Problems in Electric Vehicles Book in PDF, Epub and Kindle

In today’s modern society, to reduce the carbon dioxide gas emission from motor vehicles and to save mother nature, electric vehicles are becoming more practical. As more people begin to see the benefits of this technology, further study on the challenges and best practices is required. Artificial Intelligence Applications in Battery Management Systems and Routing Problems in Electric Vehicles focuses on the integration of renewable energy sources with the existing grid, introduces a power exchange scenario in the prevailing power market, considers the use of the electric vehicle market for creating cleaner and transformative energy, and optimizes the control variables with artificial intelligence techniques. Covering key topics such as artificial intelligence, smart grids, and sustainable development, this premier reference source is ideal for government officials, industry professionals, policymakers, researchers, scholars, practitioners, academicians, instructors, and students.

Multidimensional Lithium-Ion Battery Status Monitoring

Multidimensional Lithium-Ion Battery Status Monitoring
Author: Shunli Wang
Publisher: CRC Press
Total Pages: 333
Release: 2022-12-28
Genre: Technology & Engineering
ISBN: 1000799603

Download Multidimensional Lithium-Ion Battery Status Monitoring Book in PDF, Epub and Kindle

Multidimensional Lithium-Ion Battery Status Monitoring focuses on equivalent circuit modeling, parameter identification, and state estimation in lithium-ion battery power applications. It explores the requirements of high-power lithium-ion batteries for new energy vehicles and systematically describes the key technologies in core state estimation based on battery equivalent modeling and parameter identification methods of lithium-ion batteries, providing a technical reference for the design and application of power lithium-ion battery management systems. Reviews Li-ion battery characteristics and applications. Covers battery equivalent modeling, including electrical circuit modeling and parameter identification theory Discusses battery state estimation methods, including state of charge estimation, state of energy prediction, state of power evaluation, state of health estimation, and cycle life estimation Introduces equivalent modeling and state estimation algorithms that can be applied to new energy measurement and control in large-scale energy storage Includes a large number of examples and case studies This book has been developed as a reference for researchers and advanced students in energy and electrical engineering.

State Estimation Strategies in Lithium-ion Battery Management Systems

State Estimation Strategies in Lithium-ion Battery Management Systems
Author: Shunli Wang
Publisher: Elsevier
Total Pages: 377
Release: 2023-07-14
Genre: Business & Economics
ISBN: 0443161615

Download State Estimation Strategies in Lithium-ion Battery Management Systems Book in PDF, Epub and Kindle

State Estimation Strategies in Lithium-ion Battery Management Systems presents key technologies and methodologies in modeling and monitoring charge, energy, power and health of lithium-ion batteries. Sections introduce core state parameters of the lithium-ion battery, reviewing existing research and the significance of the prediction of core state parameters of the lithium-ion battery and analyzing the advantages and disadvantages of prediction methods of core state parameters. Characteristic analysis and aging characteristics are then discussed. Subsequent chapters elaborate, in detail, on modeling and parameter identification methods and advanced estimation techniques in different application scenarios. Offering a systematic approach supported by examples, process diagrams, flowcharts, algorithms, and other visual elements, this book is of interest to researchers, advanced students and scientists in energy storage, control, automation, electrical engineering, power systems, materials science and chemical engineering, as well as to engineers, R&D professionals, and other industry personnel. Introduces lithium-ion batteries, characteristics and core state parameters Examines battery equivalent modeling and provides advanced methods for battery state estimation Analyzes current technology and future opportunities

The Proceedings of the 5th International Conference on Energy Storage and Intelligent Vehicles (ICEIV 2022)

The Proceedings of the 5th International Conference on Energy Storage and Intelligent Vehicles (ICEIV 2022)
Author: Fengchun Sun
Publisher: Springer Nature
Total Pages: 1344
Release: 2023-05-10
Genre: Technology & Engineering
ISBN: 9819910277

Download The Proceedings of the 5th International Conference on Energy Storage and Intelligent Vehicles (ICEIV 2022) Book in PDF, Epub and Kindle

This book includes original, peer-reviewed research papers from the 5th International Conference on Energy Storage and Intelligent Vehicles (ICEIV 2022), held online, from December 3 to December 4, 2022. The topics covered include but are not limited to energy storage, power and energy systems, electrified/intelligent transportation, batteries and management, and power electronics. The papers share the latest findings in energy storage and intelligent vehicles, making the book a valuable asset for researchers, engineers, university students, etc.

AI for Status Monitoring of Utility Scale Batteries

AI for Status Monitoring of Utility Scale Batteries
Author: Shunli Wang
Publisher: IET
Total Pages: 494
Release: 2022-11-25
Genre: Technology & Engineering
ISBN: 1839537388

Download AI for Status Monitoring of Utility Scale Batteries Book in PDF, Epub and Kindle

Utility-scale Li-ion batteries are poised to play key roles for the clean energy system, but their failure has severe effects. AI can help with their monitoring and management. This work covers machine learning, neural networks, and deep learning, for battery modeling.

Advanced Model-Based Charging Control for Lithium-Ion Batteries

Advanced Model-Based Charging Control for Lithium-Ion Batteries
Author: Quan Ouyang
Publisher: Springer Nature
Total Pages: 182
Release: 2023-01-01
Genre: Technology & Engineering
ISBN: 9811970599

Download Advanced Model-Based Charging Control for Lithium-Ion Batteries Book in PDF, Epub and Kindle

In this book, the most state-of-the-art advanced model-based charging control technologies for lithium-ion batteries are explained from the fundamental theories to practical designs and applications, especially on the battery modelling, user-involved, and fast charging control algorithm design. Moreover, some other necessary design considerations, such as battery pack charging control with centralized and distributed structures, are also introduced to provide excellent solutions for improving the charging performance and extending the lifetime of the batteries/battery packs. Finally, some future directions are mentioned in brief. This book summarizes the model-based charging control technologies from the cell level to the battery pack level. From this book, readers interested in battery management can have a broad view of modern battery charging technologies. Readers who have no experience in battery management can learn the basic concept, analysis methods, and design principles of battery charging systems. Even for the readers who are occupied in this area, this book also provides rich knowledge on engineering applications and future trends of battery charging technologies.