The Mimetic Finite Difference Method for Elliptic Problems

The Mimetic Finite Difference Method for Elliptic Problems
Author: Lourenco Beirao da Veiga
Publisher: Springer
Total Pages: 399
Release: 2014-05-22
Genre: Mathematics
ISBN: 3319026631

Download The Mimetic Finite Difference Method for Elliptic Problems Book in PDF, Epub and Kindle

This book describes the theoretical and computational aspects of the mimetic finite difference method for a wide class of multidimensional elliptic problems, which includes diffusion, advection-diffusion, Stokes, elasticity, magnetostatics and plate bending problems. The modern mimetic discretization technology developed in part by the Authors allows one to solve these equations on unstructured polygonal, polyhedral and generalized polyhedral meshes. The book provides a practical guide for those scientists and engineers that are interested in the computational properties of the mimetic finite difference method such as the accuracy, stability, robustness, and efficiency. Many examples are provided to help the reader to understand and implement this method. This monograph also provides the essential background material and describes basic mathematical tools required to develop further the mimetic discretization technology and to extend it to various applications.

Conservative Finite-Difference Methods on General Grids

Conservative Finite-Difference Methods on General Grids
Author: Mikhail Shashkov
Publisher: CRC Press
Total Pages: 384
Release: 1995-12-05
Genre: Mathematics
ISBN: 9780849373756

Download Conservative Finite-Difference Methods on General Grids Book in PDF, Epub and Kindle

This new book deals with the construction of finite-difference (FD) algorithms for three main types of equations: elliptic equations, heat equations, and gas dynamic equations in Lagrangian form. These methods can be applied to domains of arbitrary shapes. The construction of FD algorithms for all types of equations is done on the basis of the support-operators method (SOM). This method constructs the FD analogs of main invariant differential operators of first order such as the divergence, the gradient, and the curl. This book is unique because it is the first book not in Russian to present the support-operators ideas. Conservative Finite-Difference Methods on General Grids is completely self-contained, presenting all the background material necessary for understanding. The book provides the tools needed by scientists and engineers to solve a wide range of practical engineering problems. An abundance of tables and graphs support and explain methods. The book details all algorithms needed for implementation. A 3.5" IBM compatible computer diskette with the main algorithms in FORTRAN accompanies text for easy use.

Mimetic Discretization Methods

Mimetic Discretization Methods
Author: Jose E. Castillo
Publisher: CRC Press
Total Pages: 256
Release: 2013-01-10
Genre: Mathematics
ISBN: 1466513446

Download Mimetic Discretization Methods Book in PDF, Epub and Kindle

To help solve physical and engineering problems, mimetic or compatible algebraic discretization methods employ discrete constructs to mimic the continuous identities and theorems found in vector calculus. Mimetic Discretization Methods focuses on the recent mimetic discretization method co-developed by the first author. Based on the Castillo-Grone operators, this simple mimetic discretization method is invariably valid for spatial dimensions no greater than three. The book also presents a numerical method for obtaining corresponding discrete operators that mimic the continuum differential and flux-integral operators, enabling the same order of accuracy in the interior as well as the domain boundary. After an overview of various mimetic approaches and applications, the text discusses the use of continuum mathematical models as a way to motivate the natural use of mimetic methods. The authors also offer basic numerical analysis material, making the book suitable for a course on numerical methods for solving PDEs. The authors cover mimetic differential operators in one, two, and three dimensions and provide a thorough introduction to object-oriented programming and C++. In addition, they describe how their mimetic methods toolkit (MTK)-available online-can be used for the computational implementation of mimetic discretization methods. The text concludes with the application of mimetic methods to structured nonuniform meshes as well as several case studies. Compiling the authors' many concepts and results developed over the years, this book shows how to obtain a robust numerical solution of PDEs using the mimetic discretization approach. It also helps readers compare alternative methods in the literature.

The Gradient Discretisation Method

The Gradient Discretisation Method
Author: Jérôme Droniou
Publisher: Springer
Total Pages: 501
Release: 2018-07-31
Genre: Mathematics
ISBN: 3319790420

Download The Gradient Discretisation Method Book in PDF, Epub and Kindle

This monograph presents the Gradient Discretisation Method (GDM), which is a unified convergence analysis framework for numerical methods for elliptic and parabolic partial differential equations. The results obtained by the GDM cover both stationary and transient models; error estimates are provided for linear (and some non-linear) equations, and convergence is established for a wide range of fully non-linear models (e.g. Leray–Lions equations and degenerate parabolic equations such as the Stefan or Richards models). The GDM applies to a diverse range of methods, both classical (conforming, non-conforming, mixed finite elements, discontinuous Galerkin) and modern (mimetic finite differences, hybrid and mixed finite volume, MPFA-O finite volume), some of which can be built on very general meshes.span style="" ms="" mincho";mso-bidi-font-family:="" the="" core="" properties="" and="" analytical="" tools="" required="" to="" work="" within="" gdm="" are="" stressed,="" it="" is="" shown="" that="" scheme="" convergence="" can="" often="" be="" established="" by="" verifying="" a="" small="" number="" of="" properties.="" scope="" some="" featured="" techniques="" results,="" such="" as="" time-space="" compactness="" theorems="" (discrete="" aubin–simon,="" discontinuous="" ascoli–arzela),="" goes="" beyond="" gdm,="" making="" them="" potentially="" applicable="" numerical="" schemes="" not="" (yet)="" known="" fit="" into="" this="" framework.span style="font-family:" ms="" mincho";mso-bidi-font-family:="" this="" monograph="" is="" intended="" for="" graduate="" students,="" researchers="" and="" experts="" in="" the="" field="" of="" numerical="" analysis="" partial="" differential="" equations./ppiiiiibr/i/i/i/i/i/p

The Mathematics of Reservoir Simulation

The Mathematics of Reservoir Simulation
Author: Richard E. Ewing
Publisher: SIAM
Total Pages: 195
Release: 2014-12-01
Genre: Science
ISBN: 0898716624

Download The Mathematics of Reservoir Simulation Book in PDF, Epub and Kindle

This book describes the state of the art of the mathematical theory and numerical analysis of imaging. Some of the applications covered in the book include computerized tomography, magnetic resonance imaging, emission tomography, electron microscopy, ultrasound transmission tomography, industrial tomography, seismic tomography, impedance tomography, and NIR imaging.