Microelectromechanical Systems

Microelectromechanical Systems
Author: Committee on Advanced Materials and Fabrication Methods for Microelectromechanical Systems
Publisher: National Academies Press
Total Pages: 76
Release: 1997-12-15
Genre: Technology & Engineering
ISBN: 0309591511

Download Microelectromechanical Systems Book in PDF, Epub and Kindle

Microelectromenchanical systems (MEMS) is a revolutionary field that adapts for new uses a technology already optimized to accomplish a specific set of objectives. The silicon-based integrated circuits process is so highly refined it can produce millions of electrical elements on a single chip and define their critical dimensions to tolerances of 100-billionths of a meter. The MEMS revolution harnesses the integrated circuitry know-how to build working microsystems from micromechanical and microelectronic elements. MEMS is a multidisciplinary field involving challenges and opportunites for electrical, mechanical, chemical, and biomedical engineering as well as physics, biology, and chemistry. As MEMS begin to permeate more and more industrial procedures, society as a whole will be strongly affected because MEMS provide a new design technology that could rival--perhaps surpass--the societal impact of integrated circuits.

Piezoelectric and Acoustic Materials for Transducer Applications

Piezoelectric and Acoustic Materials for Transducer Applications
Author: Ahmad Safari
Publisher: Springer Science & Business Media
Total Pages: 483
Release: 2008-09-11
Genre: Technology & Engineering
ISBN: 0387765409

Download Piezoelectric and Acoustic Materials for Transducer Applications Book in PDF, Epub and Kindle

The book discusses the underlying physical principles of piezoelectric materials, important properties of ferroelectric/piezoelectric materials used in today’s transducer technology, and the principles used in transducer design. It provides examples of a wide range of applications of such materials along with the appertaining rationales. With contributions from distinguished researchers, this is a comprehensive reference on all the pertinent aspects of piezoelectric materials.

Reliability of MEMS

Reliability of MEMS
Author: Osamu Tabata
Publisher: John Wiley & Sons
Total Pages: 324
Release: 2014-07-21
Genre: Technology & Engineering
ISBN: 3527335013

Download Reliability of MEMS Book in PDF, Epub and Kindle

This first book to cover exclusively and in detail the principles, tools and methods for determining the reliability of microelectromechanical materials, components and devices covers both component materials as well as entire MEMS devices. Divided into two major parts, following a general introductory chapter to reliability issues, the first part looks at the mechanical properties of the materials used in MEMS, explaining in detail the necessary measuring technologies -- nanoindenters, bulge methods, bending tests, tensile tests, and others. Part Two treats the actual devices, organized by important device categories such as pressure sensors, inertial sensors, RF MEMS, and optical MEMS.

Microelectromechanical Systems - Materials and Devices:

Microelectromechanical Systems - Materials and Devices:
Author: David A. LaVan
Publisher: Cambridge University Press
Total Pages: 342
Release: 2014-06-05
Genre: Technology & Engineering
ISBN: 9781107408586

Download Microelectromechanical Systems - Materials and Devices: Book in PDF, Epub and Kindle

This book is part of a popular series on the materials science of MEMS devices, first published in 1999. In the years since, many sophisticated devices have emerged and many aspects of MEMS materials behaviors have been characterized. However, there remain many basic questions about the relationship between process, properties and function for MEMS materials. Experimental methods have been developed, but there REMAINS a lack of standardization that would allow comparison between laboratories and commercial vendors or the creation of materials specifications that would enable greater commercialization of MEMS. The book addresses many of these issues including: RF-MEMS; optical MEMS; MEMS metrology, tribology, materials characterization and mechanical behavior; MEMS surfaces, MEMS reliability, packaging and life assessment; MEMS modeling and software tools for materials integration; biocompatibility of MEMS materials and devices; new materials and fabrication methodologies for MEMS; microfluidics and nanofluidics; in vivo drug/gene/protein delivery; novel actuators; MEMS cell-based systems; MEMS neural interfaces; MEMS sensors; and MEMS microengines and microfuel cells.

Microelectromechanical Systems

Microelectromechanical Systems
Author: National Research Council
Publisher: National Academies Press
Total Pages: 76
Release: 1998-01-01
Genre: Technology & Engineering
ISBN: 0309059801

Download Microelectromechanical Systems Book in PDF, Epub and Kindle

Microelectromenchanical systems (MEMS) is a revolutionary field that adapts for new uses a technology already optimized to accomplish a specific set of objectives. The silicon-based integrated circuits process is so highly refined it can produce millions of electrical elements on a single chip and define their critical dimensions to tolerances of 100-billionths of a meter. The MEMS revolution harnesses the integrated circuitry know-how to build working microsystems from micromechanical and microelectronic elements. MEMS is a multidisciplinary field involving challenges and opportunites for electrical, mechanical, chemical, and biomedical engineering as well as physics, biology, and chemistry. As MEMS begin to permeate more and more industrial procedures, society as a whole will be strongly affected because MEMS provide a new design technology that could rivalâ€"perhaps surpassâ€"the societal impact of integrated circuits.

An Introduction to Microelectromechanical Systems Engineering

An Introduction to Microelectromechanical Systems Engineering
Author: Nadim Maluf
Publisher: Artech House
Total Pages: 312
Release: 2004
Genre: Technology & Engineering
ISBN: 9781580535915

Download An Introduction to Microelectromechanical Systems Engineering Book in PDF, Epub and Kindle

Bringing you up-to-date with the latest developments in MEMS technology, this major revision of the best-selling An Introduction to Microelectromechanical Systems Engineering offers you a current understanding of this cutting-edge technology. You gain practical knowledge of MEMS materials, design, and manufacturing, and learn how it is being applied in industrial, optical, medical and electronic markets. The second edition features brand new sections on RF MEMS, photo MEMS, micromachining on materials other than silicon, reliability analysis, plus an expanded reference list. With an emphasis on commercialized products, this unique resource helps you determine whether your application can benefit from a MEMS solution, understand how other applications and companies have benefited from MEMS, and select and define a manufacturable MEMS process for your application. You discover how to use MEMS technology to enable new functionality, improve performance, and reduce size and cost. The book teaches you the capabilities and limitations of MEMS devices and processes, and helps you communicate the relative merits of MEMS to your company's management. From critical discussions on design operation and process fabrication of devices and systems, to a thorough explanation of MEMS packaging, this easy-to-understand book clearly explains the basics of MEMS engineering, making it an invaluable reference for your work in the field.

Mems for Biomedical Applications

Mems for Biomedical Applications
Author: Shekhar Bhansali
Publisher: Elsevier
Total Pages: 511
Release: 2012-07-18
Genre: Technology & Engineering
ISBN: 0857096273

Download Mems for Biomedical Applications Book in PDF, Epub and Kindle

The application of Micro Electro Mechanical Systems (MEMS) in the biomedical field is leading to a new generation of medical devices. MEMS for biomedical applications reviews the wealth of recent research on fabrication technologies and applications of this exciting technology.The book is divided into four parts: Part one introduces the fundamentals of MEMS for biomedical applications, exploring the microfabrication of polymers and reviewing sensor and actuator mechanisms. Part two describes applications of MEMS for biomedical sensing and diagnostic applications. MEMS for in vivo sensing and electrical impedance spectroscopy are investigated, along with ultrasonic transducers, and lab-on-chip devices. MEMS for tissue engineering and clinical applications are the focus of part three, which considers cell culture and tissue scaffolding devices, BioMEMS for drug delivery and minimally invasive medical procedures. Finally, part four reviews emerging biomedical applications of MEMS, from implantable neuroprobes and ocular implants to cellular microinjection and hybrid MEMS.With its distinguished editors and international team of expert contributors, MEMS for biomedical applications provides an authoritative review for scientists and manufacturers involved in the design and development of medical devices as well as clinicians using this important technology. Reviews the wealth of recent research on fabrication technologies and applications of Micro Electro Mechanical Systems (MEMS) in the biomedical field Introduces the fundamentals of MEMS for biomedical applications, exploring the microfabrication of polymers and reviewing sensor and actuator mechanisms Considers MEMS for biomedical sensing and diagnostic applications, along with MEMS for in vivo sensing and electrical impedance spectroscopy

Microelectromechanical Systems: Volume 1139

Microelectromechanical Systems: Volume 1139
Author: Srikar Vengallatore
Publisher: Cambridge University Press
Total Pages: 264
Release: 2014-06-05
Genre: Technology & Engineering
ISBN: 9781107408395

Download Microelectromechanical Systems: Volume 1139 Book in PDF, Epub and Kindle

Microelectromechanical systems (MEMS) have transitioned from a technology niche to a role of major industrial significance. The worldwide market for MEMS is now approximately $10 billion, and the total value of systems enabled by MEMS is several orders of magnitude higher than this figure. As the market has grown, the material and process sets have broadened and departed from their semiconductor roots. In addition to engineering materials, there is now great interest in integrating multifunctional nanomaterials, smart materials and biomaterials within MEMS/NEMS to enhance functionality, performance and reliability. The opportunities created by this integration have generated a vibrant research community working on new materials and processes. This book reflects the breadth of topics currently under investigation in the field. Novel materials and accompanying processes are discussed, as are more conventional materials and processes. Consistent themes are the need for accurate material property assessment at the relevant length scales and for suitable metrology tools to support the introduction of new materials.