Microelectromechanical Structures for Materials Research

Microelectromechanical Structures for Materials Research
Author: Stuart B. Brown
Publisher:
Total Pages: 272
Release: 1998
Genre: Technology & Engineering
ISBN:

Download Microelectromechanical Structures for Materials Research Book in PDF, Epub and Kindle

Reports recent developments in a field that is coalescing but still lacks the coherence or certainty of a mature discipline in terms of accepted methodologies. The 39 papers discuss the resonance method as an attractive way to evaluate mechanical properties of thin gold films, heating effects on the Young's modulus of films sputtered onto micromachined resonators, test methods for characterizing piezoelectric thin films, polysilicon tensile testing with electrostatic gripping, silicon-based epitaxial films, and other aspects. Annotation copyrighted by Book News, Inc., Portland, OR

Handbook of Silicon Based MEMS Materials and Technologies

Handbook of Silicon Based MEMS Materials and Technologies
Author: Markku Tilli
Publisher: Elsevier
Total Pages: 670
Release: 2009-12-08
Genre: Technology & Engineering
ISBN: 0815519885

Download Handbook of Silicon Based MEMS Materials and Technologies Book in PDF, Epub and Kindle

A comprehensive guide to MEMS materials, technologies and manufacturing, examining the state of the art with a particular emphasis on current and future applications. Key topics covered include: Silicon as MEMS material Material properties and measurement techniques Analytical methods used in materials characterization Modeling in MEMS Measuring MEMS Micromachining technologies in MEMS Encapsulation of MEMS components Emerging process technologies, including ALD and porous silicon Written by 73 world class MEMS contributors from around the globe, this volume covers materials selection as well as the most important process steps in bulk micromachining, fulfilling the needs of device design engineers and process or development engineers working in manufacturing processes. It also provides a comprehensive reference for the industrial R&D and academic communities. Veikko Lindroos is Professor of Physical Metallurgy and Materials Science at Helsinki University of Technology, Finland. Markku Tilli is Senior Vice President of Research at Okmetic, Vantaa, Finland. Ari Lehto is Professor of Silicon Technology at Helsinki University of Technology, Finland. Teruaki Motooka is Professor at the Department of Materials Science and Engineering, Kyushu University, Japan. Provides vital packaging technologies and process knowledge for silicon direct bonding, anodic bonding, glass frit bonding, and related techniques Shows how to protect devices from the environment and decrease package size for dramatic reduction of packaging costs Discusses properties, preparation, and growth of silicon crystals and wafers Explains the many properties (mechanical, electrostatic, optical, etc), manufacturing, processing, measuring (incl. focused beam techniques), and multiscale modeling methods of MEMS structures

Microelectromechanical Systems

Microelectromechanical Systems
Author: Committee on Advanced Materials and Fabrication Methods for Microelectromechanical Systems
Publisher: National Academies Press
Total Pages: 76
Release: 1997-12-15
Genre: Technology & Engineering
ISBN: 0309591511

Download Microelectromechanical Systems Book in PDF, Epub and Kindle

Microelectromenchanical systems (MEMS) is a revolutionary field that adapts for new uses a technology already optimized to accomplish a specific set of objectives. The silicon-based integrated circuits process is so highly refined it can produce millions of electrical elements on a single chip and define their critical dimensions to tolerances of 100-billionths of a meter. The MEMS revolution harnesses the integrated circuitry know-how to build working microsystems from micromechanical and microelectronic elements. MEMS is a multidisciplinary field involving challenges and opportunites for electrical, mechanical, chemical, and biomedical engineering as well as physics, biology, and chemistry. As MEMS begin to permeate more and more industrial procedures, society as a whole will be strongly affected because MEMS provide a new design technology that could rival--perhaps surpass--the societal impact of integrated circuits.

Microelectromechanical Systems

Microelectromechanical Systems
Author: National Research Council
Publisher: National Academies Press
Total Pages: 76
Release: 1998-01-01
Genre: Technology & Engineering
ISBN: 0309059801

Download Microelectromechanical Systems Book in PDF, Epub and Kindle

Microelectromenchanical systems (MEMS) is a revolutionary field that adapts for new uses a technology already optimized to accomplish a specific set of objectives. The silicon-based integrated circuits process is so highly refined it can produce millions of electrical elements on a single chip and define their critical dimensions to tolerances of 100-billionths of a meter. The MEMS revolution harnesses the integrated circuitry know-how to build working microsystems from micromechanical and microelectronic elements. MEMS is a multidisciplinary field involving challenges and opportunites for electrical, mechanical, chemical, and biomedical engineering as well as physics, biology, and chemistry. As MEMS begin to permeate more and more industrial procedures, society as a whole will be strongly affected because MEMS provide a new design technology that could rivalâ€"perhaps surpassâ€"the societal impact of integrated circuits.

The MEMS Handbook

The MEMS Handbook
Author: Mohamed Gad-el-Hak
Publisher: CRC Press
Total Pages: 1386
Release: 2001-09-27
Genre: Technology & Engineering
ISBN: 9781420050905

Download The MEMS Handbook Book in PDF, Epub and Kindle

The revolution is well underway. Our understanding and utilization of microelectromechanical systems (MEMS) are growing at an explosive rate with a worldwide market approaching billions of dollars. In time, microdevices will fill the niches of our lives as pervasively as electronics do right now. But if these miniature devices are to fulfill their mammoth potential, today's engineers need a thorough grounding in the underlying physics, modeling techniques, fabrication methods, and materials of MEMS. The MEMS Handbook delivers all of this and more. Its team of authors-unsurpassed in their experience and standing in the scientific community- explore various aspects of MEMS: their design, fabrication, and applications as well as the physical modeling of their operations. Designed for maximum readability without compromising rigor, it provides a current and essential overview of this fledgling discipline.

Materials Science of Microelectromechanical Systems (MEMS) Devices IV: Volume 687

Materials Science of Microelectromechanical Systems (MEMS) Devices IV: Volume 687
Author: Arturo A. Ayón
Publisher:
Total Pages: 344
Release: 2002-05-23
Genre: Technology & Engineering
ISBN:

Download Materials Science of Microelectromechanical Systems (MEMS) Devices IV: Volume 687 Book in PDF, Epub and Kindle

The MRS Symposium Proceeding series is an internationally recognised reference suitable for researchers and practitioners. This book, first published in 2002, focuses on the materials science of MEMS structures and the films involved to create those structures.

MEMS Materials and Processes Handbook

MEMS Materials and Processes Handbook
Author: Reza Ghodssi
Publisher: Springer Science & Business Media
Total Pages: 1211
Release: 2011-03-18
Genre: Technology & Engineering
ISBN: 0387473181

Download MEMS Materials and Processes Handbook Book in PDF, Epub and Kindle

MEMs Materials and Processes Handbook" is a comprehensive reference for researchers searching for new materials, properties of known materials, or specific processes available for MEMS fabrication. The content is separated into distinct sections on "Materials" and "Processes". The extensive Material Selection Guide" and a "Material Database" guides the reader through the selection of appropriate materials for the required task at hand. The "Processes" section of the book is organized as a catalog of various microfabrication processes, each with a brief introduction to the technology, as well as examples of common uses in MEMs.

Materials & Process Integration for MEMS

Materials & Process Integration for MEMS
Author: Francis E. H. Tay
Publisher: Springer Science & Business Media
Total Pages: 302
Release: 2013-06-29
Genre: Technology & Engineering
ISBN: 1475757913

Download Materials & Process Integration for MEMS Book in PDF, Epub and Kindle

The field of materials and process integration for MEMS research has an extensive past as well as a long and promising future. Researchers, academicians and engineers from around the world are increasingly devoting their efforts on the materials and process integration issues and opportunities in MEMS devices. These efforts are crucial to sustain the long-term growth of the MEMS field. The commercial MEMS community is heavily driven by the push for profitable and sustainable products. In the course of establishing high volume and low-cost production processes, the critical importance of materials properties, behaviors, reliability, reproducibility, and predictability, as well as process integration of compatible materials systems become apparent. Although standard IC fabrication steps, particularly lithographic techniques, are leveraged heavily in the creation of MEMS devices, additional customized and novel micromachining techniques are needed to develop sophisticated MEMS structures. One of the most common techniques is bulk micromachining, by which micromechanical structures are created by etching into the bulk of the substrates with either anisotropic etching with strong alk:ali solution or deep reactive-ion etching (DRIB). The second common technique is surface micromachining, by which planar microstructures are created by sequential deposition and etching of thin films on the surface of the substrate, followed by a fmal removal of sacrificial layers to release suspended structures. Other techniques include deep lithography and plating to create metal structures with high aspect ratios (LIGA), micro electrodischarge machining (J.