Metal-to-insulator Transitions in Transition Metal Oxides

Metal-to-insulator Transitions in Transition Metal Oxides
Author: Andrew O'Hara
Publisher:
Total Pages: 444
Release: 2015
Genre:
ISBN:

Download Metal-to-insulator Transitions in Transition Metal Oxides Book in PDF, Epub and Kindle

Transition metal oxides have received significant attention in recent decades due to their ability to display a wide range of novel functional properties. In particular, many oxides are able to undergo metal-to-insulator transitions as a function of external stimuli such as temperature, pressure, and electric field or through doping and defect formation. In the present dissertation, density functional theory is used to explore these phenomena in three systems: (1) the Peierls transition in NbO2, (2) defect formation necessary for HfO2’s resistive switching, and (3) La-doping of SrTiO3 and trap states that may limit conductivity. For NbO2, we use successive improvements to the exchange-correlation energy combined with experiment to improve understanding of the material’s band gap in the insulating phase and show it to be close to 1.2 eV for the direct gap with an indirect gap just below 1.0 eV. Furthermore, we are able to explain the orbital contributions to the dielectric function. Using a combination of transition state theory and phonon dispersion, we demonstrate that the phase transition is driven by a second-order structural transition of the Peierls type. For HfO2, we explore the nature of the metallic gettering layer used to create substoichiometric HfO2-x for resistive switching via an atomistic model of the hafnia-hafnium interface and use transition state theory to study the ability for oxygen to diffuse across the interface. Our investigation shows that the presence of hafnium lowers the formation energy of oxygen vacancies in hafnia, but more importantly the oxidation of hafnium through oxygen migration is energetically favored. In La-doped SrTiO3, the calculations are first used to corroborate optical and electrical measurements by giving values for the density of states effective mass as well as understanding the effect of La-doping on the conductivity and DC relaxation time. Motivated by the experimental observation that even after annealing in oxygen rich environments, heavily n-type doped SrTiO3 shows carrier concentrations inconsistent with dopant concentration, we explore the role that interstitial oxygen may play as a trapping state in SrTiO3. We find three meta-stable sites and that for n-type SrTiO3, interstitials with mid-gap states are favored.

Imaging Competing Electronic Phases During Metal Insulator Transitions in Transition Metal Oxides Using Microwave Impedance Microscopy

Imaging Competing Electronic Phases During Metal Insulator Transitions in Transition Metal Oxides Using Microwave Impedance Microscopy
Author: Ashish Gangshettiwar
Publisher:
Total Pages: 0
Release: 2022
Genre:
ISBN:

Download Imaging Competing Electronic Phases During Metal Insulator Transitions in Transition Metal Oxides Using Microwave Impedance Microscopy Book in PDF, Epub and Kindle

Metal-Insulator transitions are accompanied by huge resistivity changes, sometimes over ten orders of magnitude, and are widely observed in condensed-matter systems. Particularly important are the transitions driven by correlation effects associated with the electron-electron interaction. The insulating phase caused by the correlation effects is known as the Mott Insulator. Despite a long history of investigations, the driving force of the MIT and the exact nature of the ground state are still controversial. Using microwave impedance microscopy, we will study the coexisting metallic and insulating phases in different strongly correlated compounds which might carry important information on the transition in these materials. In this dissertation, I will begin by discussing Microwave Impedance Microscopy which will be the prime research tool used in the study of these materials. I will present the technical specifications of this tool and how it can be modified to be used on cryogenic setups, mainly, using tuning fork microscopy for topography feedback. The application of MIM to study Metal-Insulator Phase transitions in strongly correlated systems is demonstrated by studying doped Ruthenate oxides. Chapter 4 describes the insights gathered on Ti doped Bilayer Calcium Ruthenates which includes the discovery of a new stripe-phase at the MIT phase boundary. Followed by a chapter discussing the comparison with the MIT in Mn-doped bilayer Calcium ruthenate. I will conclude the dissertation with a short summary of our contribution to the field and an outlook where I would highlight the directions needed to pursue further research and come up with an overall picture of the phase transition in this class of material

Frontiers of 4D- and 5D-transition Metal Oxides

Frontiers of 4D- and 5D-transition Metal Oxides
Author: Gang Cao
Publisher: World Scientific
Total Pages: 328
Release: 2013
Genre: Science
ISBN: 9814374865

Download Frontiers of 4D- and 5D-transition Metal Oxides Book in PDF, Epub and Kindle

This book is aimed at advanced undergraduates, graduate students and other researchers who possess an introductory background in materials physics and/or chemistry, and an interest in the physical and chemical properties of novel materials, especially transition metal oxides.New materials often exhibit novel phenomena of great fundamental and technological importance. Contributing authors review the structural, physical and chemical properties of notable 4d- and 5d-transition metal oxides discovered over the last 10 years. These materials exhibit extraordinary physical properties that differ significantly from those of the heavily studied 3d-transition metal oxides, mainly due to the relatively strong influence of the spin-orbit interaction and orbital order in 4d- and 5d materials. The immense growth in publications addressing the physical properties of these novel materials underlines the need to document recent advances and the current state of this field. This book includes overviews of the current experimental situation concerning these materials.

Physics of Transition Metal Oxides

Physics of Transition Metal Oxides
Author: Sadamichi Maekawa
Publisher: Springer Science & Business Media
Total Pages: 345
Release: 2013-03-09
Genre: Technology & Engineering
ISBN: 3662092980

Download Physics of Transition Metal Oxides Book in PDF, Epub and Kindle

The fact that magnetite (Fe304) was already known in the Greek era as a peculiar mineral is indicative of the long history of transition metal oxides as useful materials. The discovery of high-temperature superconductivity in 1986 has renewed interest in transition metal oxides. High-temperature su perconductors are all cuprates. Why is it? To answer to this question, we must understand the electronic states in the cuprates. Transition metal oxides are also familiar as magnets. They might be found stuck on the door of your kitchen refrigerator. Magnetic materials are valuable not only as magnets but as electronics materials. Manganites have received special attention recently because of their extremely large magnetoresistance, an effect so large that it is called colossal magnetoresistance (CMR). What is the difference between high-temperature superconducting cuprates and CMR manganites? Elements with incomplete d shells in the periodic table are called tran sition elements. Among them, the following eight elements with the atomic numbers from 22 to 29, i. e. , Ti, V, Cr, Mn, Fe, Co, Ni and Cu are the most im portant. These elements make compounds with oxygen and present a variety of properties. High-temperature superconductivity and CMR are examples. Most of the textbooks on magnetism discuss the magnetic properties of transition metal oxides. However, when one studies magnetism using tradi tional textbooks, one finds that the transport properties are not introduced in the initial stages.

Metal-Insulator Transitions

Metal-Insulator Transitions
Author: Nevill Mott
Publisher: CRC Press
Total Pages: 287
Release: 2004-01-14
Genre: Technology & Engineering
ISBN: 1466576456

Download Metal-Insulator Transitions Book in PDF, Epub and Kindle

This is a second edition of a classic book. Written by the late, great Sir Nevill Mott (Britain's last Nobel Prize winner for Physics), Metal Insulator Transitions has been greatly updated and expanded to further enhance its already enviable reputation.

Investigation Of Electronic Structure Of Transition Metal Oxides Exhibiting Metal-insulator Transitions And Related Phenomena

Investigation Of Electronic Structure Of Transition Metal Oxides Exhibiting Metal-insulator Transitions And Related Phenomena
Author:
Publisher:
Total Pages:
Release: 2002
Genre:
ISBN:

Download Investigation Of Electronic Structure Of Transition Metal Oxides Exhibiting Metal-insulator Transitions And Related Phenomena Book in PDF, Epub and Kindle

Transition metal oxides have proven to be a fertile research area for condensed matter physicists due to the fascinating array of superconducting, magnetic and electronic properties they exhibit. A particular resurgence of intense activity in investigating the properties of these systems followed the discovery of high temperature superconductivity in the cuprates, colossal magnetoresistance in the manganites, ferroelectricity in the cobaltites and simultaneous ferroelectric and ferromagnetic ordering in the manganites. These diverse properties of transition metal compounds arise due to the presence of strong electron-electron interactions within the transition element 3d states. Indeed, it is the competition between the localizing effects of such interactions and the comparable hopping strengths driving the system towards delocalization, that is responsible for these wide spectrum of interesting properties. In terms of theoretical and fundamental issues, electronic structure of transition metal oxides play a most important role, providing a testing ground for new many-body theoretical approaches treating the correlation problem at various levels of approximations. In addition to this rich spectrum of properties, metal-insulator transitions often occur and can even be coincident with structural or magnetic changes due to the strong coupling between charge, magnetic and lattice degrees of freedom. However, in spite of the immense activities in this area, the underlying phenomena is not yet completely understood. A careful investigation of the electronic structure of these systems will help in the microscopic understanding of these and photoelectron spectroscopy has been established as the most powerful tool for investigating the electronic structures of these systems. In this thesis we investigate the electronic structures of some of these transition metal oxides and the metal-insulator transition as a function of electron correlation strength and doping of charge car.

New Spin on Metal-Insulator Transitions

New Spin on Metal-Insulator Transitions
Author: Andrej Pustogow
Publisher: Mdpi AG
Total Pages: 0
Release: 2023-04-04
Genre: Science
ISBN: 9783036570587

Download New Spin on Metal-Insulator Transitions Book in PDF, Epub and Kindle

Metal‒insulator transitions (MITs) constitute a core subject of fundamental condensed matter research. The localization of conduction electrons occurs in a large variety of materials and engenders intriguing quantum phenomena such as unconventional superconductivity and exotic magnetism. Nearby an MIT, minuscule changes of the interaction strength via chemical substitution, doping, physical pressure, or even disorder can trigger spectacular resistivity changes from zero in a superconductor to infinity in an insulator near T = 0. While approaching an insulating state from the conducting side, deviations from Fermi-liquid transport in bad and strange metals are the rule rather than the exception. As the drosophila of electron‒electron interactions, the Mott MIT receives particular attention from theory as it can be studied using the Hubbard model. On the experimental side, organic charge-transfer salts and transition metal oxides are versatile platforms for working toward solving the puzzles of correlated electron systems. This Special Issue provides a view into the ongoing research endeavors investigating emergent phenomena around MITs.

Localization and Metal-Insulator Transitions

Localization and Metal-Insulator Transitions
Author: Hellmut Fritzche
Publisher: Springer
Total Pages: 558
Release: 1985
Genre: Science
ISBN:

Download Localization and Metal-Insulator Transitions Book in PDF, Epub and Kindle

This volume and its two companion volumes, entitled Tetrahedrally-Bonded Amorphous Semiconductors and Physics of Disordered Materials, are our way of paying special tribute to Sir Nevill Mott and to express our heartfelt wishes to him on the occasion of his eightieth birthday. Sir Nevill has set the highest standards as a physicist, teacher, and scientific leader. Our feelings for him include not only the respect and admiration due a great scientist, but also a deep affection for a great human being, who possesses a rare combination of outstanding personal qualities. We thank him for enriching our lives, and we shall forever carry cherished memories of this noble man. Scientists best express their thanks by contributing their thoughts and observations to a Festschrift. This one honoring Sir Nevill fills three volumes, with literally hundreds of authors meeting a strict deadline. The fact that contributions poured in from all parts of the world attests to the international cohesion of our scientific community. It is a tribute to Sir Nevill's stand for peace and understanding, transcending national borders. The editors wish to express their gratitude to Ghazaleh Koefod for her diligence and expertise in deciphering and typing many of the papers, as well as helping in numerous other ways. The blame for the errors that remain belongs to the editors.