Metal Oxides for Non-volatile Memory

Metal Oxides for Non-volatile Memory
Author: Panagiotis Dimitrakis
Publisher: Elsevier
Total Pages: 534
Release: 2022-03-01
Genre: Technology & Engineering
ISBN: 0128146303

Download Metal Oxides for Non-volatile Memory Book in PDF, Epub and Kindle

Metal Oxides for Non-volatile Memory: Materials, Technology and Applications covers the technology and applications of metal oxides (MOx) in non-volatile memory (NVM) technology. The book addresses all types of NVMs, including floating-gate memories, 3-D memories, charge-trapping memories, quantum-dot memories, resistance switching memories and memristors, Mott memories and transparent memories. Applications of MOx in DRAM technology where they play a crucial role to the DRAM evolution are also addressed. The book offers a broad scope, encompassing discussions of materials properties, deposition methods, design and fabrication, and circuit and system level applications of metal oxides to non-volatile memory. Finally, the book addresses one of the most promising materials that may lead to a solution to the challenges in chip size and capacity for memory technologies, particular for mobile applications and embedded systems. Systematically covers metal oxides materials and their properties with memory technology applications, including floating-gate memory, 3-D memory, memristors, and much more Provides an overview on the most relevant deposition methods, including sputtering, CVD, ALD and MBE Discusses the design and fabrication of metal oxides for wide breadth of non-volatile memory applications from 3-D flash technology, transparent memory and DRAM technology

Physics of Carbonyl Doped Transition Metal Oxides for a Non-volatile Memory

Physics of Carbonyl Doped Transition Metal Oxides for a Non-volatile Memory
Author: Seth Christopher Shoemaker
Publisher:
Total Pages: 66
Release: 2019
Genre: Computer storage devices
ISBN:

Download Physics of Carbonyl Doped Transition Metal Oxides for a Non-volatile Memory Book in PDF, Epub and Kindle

This thesis reviews the current state of technologies used in non-volatile memory and the limitations these technologies create for memory and CPU systems. A detailed review and analysis of the physics found in electron-electron interactions in doped transition metal oxides is then provided. This analysis serves as the basis for analyzing CeRAM; a technology that relies on electron-electron interactions that has the potential to serve as a replacement for current memory systems.

Investigation of Metal Oxide Dielectrics for Non-volatile Floating Gate and Resistance Switching Memory Applications

Investigation of Metal Oxide Dielectrics for Non-volatile Floating Gate and Resistance Switching Memory Applications
Author: Bhaswar Chakrabarti
Publisher:
Total Pages: 346
Release: 2014
Genre: Ferroelectric storage cells
ISBN:

Download Investigation of Metal Oxide Dielectrics for Non-volatile Floating Gate and Resistance Switching Memory Applications Book in PDF, Epub and Kindle

Floating gate transistor based flash memories have seen more than a decade of continuous growth as the prominent non-volatile memory technology. However, the recent trends indicate that the scaling of flash memory is expected to saturate in the near future. Several alternative technologies are being considered for the replacement of flash in the near future. The basic motivation for this work is to investigate the material properties of metal oxide based high-k dielectrics for potential applications in floating gate and resistance switching memory applications. This dissertation can be divided into two main sections. In the first section, the tunneling characteristics of the SiO 2 /HfO 2 stacks were investigated. Previous theoretical studies for thin SiO 2 / thick high-k stacks predict an increase in tunneling current in the high-bias regime (better programming) and a decrease in the low-bias regime (better retention) in comparison to pure SiO2 of same equivalent oxide thickness (EOT). However, our studies indicated that the performance improvement in SiO2 /HfO2 stacks with thick HfO2 layer is difficult due to significant amount of charge traps in thick HfO2 layers. Oxygen anneal on the stacks did not improve the programming current and retention. X-ray photoelectron spectroscopy (XPS) studies indicated that this was due to formation of an interfacial oxide layer. The second part of the dissertation deals with the investigation of resistive switching in metal oxides. Although promising, practical applications of resistive random access memories (RRAM) require addressing several issues including high forming voltage, large operating currents and reliability. We first investigated resistive switching in HfTiO x nanolaminate with conventional TiN electrodes. The forming-free switching observed in the structures could be described by the quantum point contact model. The modelling results indicated that the forming-free characteristics can be due to a higher number of filaments in comparison to a device that requires forming. Forming-free resistive switching with low current operation in graphene-insulator-graphene structures was also investigated. Electrical as well as Raman and XPS analysis indicated that low current operation is due to the migration and subsequent physisorption of oxygen ions on the graphene surface during the set operation. A statistical model was also developed for quantitative prediction of the effect of noise on RRAM characteristics.

Emerging Non-Volatile Memories

Emerging Non-Volatile Memories
Author: Seungbum Hong
Publisher: Springer
Total Pages: 280
Release: 2014-11-18
Genre: Technology & Engineering
ISBN: 1489975373

Download Emerging Non-Volatile Memories Book in PDF, Epub and Kindle

This book is an introduction to the fundamentals of emerging non-volatile memories and provides an overview of future trends in the field. Readers will find coverage of seven important memory technologies, including Ferroelectric Random Access Memory (FeRAM), Ferromagnetic RAM (FMRAM), Multiferroic RAM (MFRAM), Phase-Change Memories (PCM), Oxide-based Resistive RAM (RRAM), Probe Storage, and Polymer Memories. Chapters are structured to reflect diffusions and clashes between different topics. Emerging Non-Volatile Memories is an ideal book for graduate students, faculty, and professionals working in the area of non-volatile memory. This book also: Covers key memory technologies, including Ferroelectric Random Access Memory (FeRAM), Ferromagnetic RAM (FMRAM), and Multiferroic RAM (MFRAM), among others. Provides an overview of non-volatile memory fundamentals. Broadens readers’ understanding of future trends in non-volatile memories.

Emerging Non-volatile Memory Technologies

Emerging Non-volatile Memory Technologies
Author: Wen Siang Lew
Publisher: Springer Nature
Total Pages: 439
Release: 2021-01-09
Genre: Science
ISBN: 9811569126

Download Emerging Non-volatile Memory Technologies Book in PDF, Epub and Kindle

This book offers a balanced and comprehensive guide to the core principles, fundamental properties, experimental approaches, and state-of-the-art applications of two major groups of emerging non-volatile memory technologies, i.e. spintronics-based devices as well as resistive switching devices, also known as Resistive Random Access Memory (RRAM). The first section presents different types of spintronic-based devices, i.e. magnetic tunnel junction (MTJ), domain wall, and skyrmion memory devices. This section describes how their developments have led to various promising applications, such as microwave oscillators, detectors, magnetic logic, and neuromorphic engineered systems. In the second half of the book, the underlying device physics supported by different experimental observations and modelling of RRAM devices are presented with memory array level implementation. An insight into RRAM desired properties as synaptic element in neuromorphic computing platforms from material and algorithms viewpoint is also discussed with specific example in automatic sound classification framework.

Silicon Non-Volatile Memories

Silicon Non-Volatile Memories
Author: Barbara de Salvo
Publisher: John Wiley & Sons
Total Pages: 222
Release: 2013-05-10
Genre: Technology & Engineering
ISBN: 1118617800

Download Silicon Non-Volatile Memories Book in PDF, Epub and Kindle

Semiconductor flash memory is an indispensable component of modern electronic systems which has gained a strategic position in recent decades due to the progressive shift from computing to consumer (and particularly mobile) products as revenue drivers for Integrated Circuits (IC) companies. This book provides a comprehensive overview of the different technological approaches currently being studied to fulfill future memory requirements. Two main research paths are identified and discussed. Different "evolutionary paths" based on the use of new materials (such as silicon nanocrystals for storage nodes and high-k insulators for active dielectrics) and of new transistor structures (such as multi-gate devices) are investigated in order to extend classical floating gate technology to the 32 nm node. "Disruptive paths" based on new storage mechanisms or new technologies (such as phase-change devices, polymer or molecular cross-bar memories) are also covered in order to address 22 nm and smaller IC generations. Finally, the main factors at the origin of these phenomena are identified and analyzed, providing pointers on future research activities and developments in this area.

Functional Metal Oxide Nanostructures

Functional Metal Oxide Nanostructures
Author: Junqiao Wu
Publisher: Springer Science & Business Media
Total Pages: 371
Release: 2011-09-22
Genre: Technology & Engineering
ISBN: 1441999310

Download Functional Metal Oxide Nanostructures Book in PDF, Epub and Kindle

Metal oxides and particularly their nanostructures have emerged as animportant class of materials with a rich spectrum of properties and greatpotential for device applications. In this book, contributions from leadingexperts emphasize basic physical properties, synthesis and processing, and thelatest applications in such areas as energy, catalysis and data storage. Functional Metal Oxide Nanostructuresis an essential reference for any materials scientist or engineer with aninterest in metal oxides, and particularly in recent progress in defectphysics, strain effects, solution-based synthesis, ionic conduction, and theirapplications.

Cerium Oxide Based Resistive Random Access Memory Devices

Cerium Oxide Based Resistive Random Access Memory Devices
Author: Cheng-Chih Hsieh
Publisher:
Total Pages: 242
Release: 2017
Genre:
ISBN:

Download Cerium Oxide Based Resistive Random Access Memory Devices Book in PDF, Epub and Kindle

Resistive Random Access Memory (RRAM) is an emerging technology of non-volatile memory (NVM). Although the observation of metal oxide that can undergo an abrupt insulator-metal transition into a conductive state has been known for over 40 years, researchers started investigating those materials for memory applications in late 1990s. It has been considered as the next generation memory technology to replace current flash memory because RRAM has demonstrated feasible switching characteristics and potential to build high density arrays and also RRAM is also compatible with contemporary CMOS processes, which means RRAM can be integrated into current CMOS chips. While the structure of RRAM is a simple metal-insulator-metal (MIM) device, there are numerous materials that exhibit resistive switching. The switching behavior is not only dependent on the switching layer materials but also dependent on the choice of metal electrodes and their interfacial properties. Many metal oxides such as hafnium oxide, titanium oxide, aluminum oxide, nickel oxide (NiO), tantalum oxide and etc. have been studied in details; however, some materials are unexplored such as cerium oxide. In addition to nonvolatile storage applications, RRAM is considered as one of essential elements for advancing neuromorphic computing because of its analog switching and retention characteristics. This thesis investigated CeO[subscript x]-based RRAMs, from its fundamental device characteristics to neuromorphic applications.

Advances in Non-volatile Memory and Storage Technology

Advances in Non-volatile Memory and Storage Technology
Author: Yoshio Nishi
Publisher: Woodhead Publishing
Total Pages: 662
Release: 2019-06-15
Genre: Science
ISBN: 0081025858

Download Advances in Non-volatile Memory and Storage Technology Book in PDF, Epub and Kindle

Advances in Nonvolatile Memory and Storage Technology, Second Edition, addresses recent developments in the non-volatile memory spectrum, from fundamental understanding, to technological aspects. The book provides up-to-date information on the current memory technologies as related by leading experts in both academia and industry. To reflect the rapidly changing field, many new chapters have been included to feature the latest in RRAM technology, STT-RAM, memristors and more. The new edition describes the emerging technologies including oxide-based ferroelectric memories, MRAM technologies, and 3D memory. Finally, to further widen the discussion on the applications space, neuromorphic computing aspects have been included. This book is a key resource for postgraduate students and academic researchers in physics, materials science and electrical engineering. In addition, it will be a valuable tool for research and development managers concerned with electronics, semiconductors, nanotechnology, solid-state memories, magnetic materials, organic materials and portable electronic devices. Discusses emerging devices and research trends, such as neuromorphic computing and oxide-based ferroelectric memories Provides an overview on developing nonvolatile memory and storage technologies and explores their strengths and weaknesses Examines improvements to flash technology, charge trapping and resistive random access memory