The Design of Low-Voltage, Low-Power Sigma-Delta Modulators

The Design of Low-Voltage, Low-Power Sigma-Delta Modulators
Author: Shahriar Rabii
Publisher: Springer Science & Business Media
Total Pages: 198
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 1461551056

Download The Design of Low-Voltage, Low-Power Sigma-Delta Modulators Book in PDF, Epub and Kindle

Oversampling techniques based on sigma-delta modulation are widely used to implement the analog/digital interfaces in CMOS VLSI technologies. This approach is relatively insensitive to imperfections in the manufacturing process and offers numerous advantages for the realization of high-resolution analog-to-digital (A/D) converters in the low-voltage environment that is increasingly demanded by advanced VLSI technologies and by portable electronic systems. In The Design of Low-Voltage, Low-Power Sigma-Delta Modulators, an analysis of power dissipation in sigma-delta modulators is presented, and a low-voltage implementation of a digital-audio performance A/D converter based on the results of this analysis is described. Although significant power savings can typically be achieved in digital circuits by reducing the power supply voltage, the power dissipation in analog circuits actually tends to increase with decreasing supply voltages. Oversampling architectures are a potentially power-efficient means of implementing high-resolution A/D converters because they reduce the number and complexity of the analog circuits in comparison with Nyquist-rate converters. In fact, it is shown that the power dissipation of a sigma-delta modulator can approach that of a single integrator with the resolution and bandwidth required for a given application. In this research the influence of various parameters on the power dissipation of the modulator has been evaluated and strategies for the design of a power-efficient implementation have been identified. The Design of Low-Voltage, Low-Power Sigma-Delta Modulators begins with an overview of A/D conversion, emphasizing sigma-delta modulators. It includes a detailed analysis of noise in sigma-delta modulators, analyzes power dissipation in integrator circuits, and addresses practical issues in the circuit design and testing of a high-resolution modulator. The Design of Low-Voltage, Low-Power Sigma-Delta Modulators will be of interest to practicing engineers and researchers in the areas of mixed-signal and analog integrated circuit design.

Design of Low-Voltage Low-Power CMOS Delta-Sigma A/D Converters

Design of Low-Voltage Low-Power CMOS Delta-Sigma A/D Converters
Author: Vincenzo Peluso
Publisher: Springer Science & Business Media
Total Pages: 178
Release: 2013-03-09
Genre: Technology & Engineering
ISBN: 1475729782

Download Design of Low-Voltage Low-Power CMOS Delta-Sigma A/D Converters Book in PDF, Epub and Kindle

Design of Low-Voltage Low-Power CMOS Delta-Sigma A/D Converters investigates the feasibility of designing Delta-Sigma Analog to Digital Converters for very low supply voltage (lower than 1.5V) and low power operation in standard CMOS processes. The chosen technique of implementation is the Switched Opamp Technique which provides Switched Capacitor operation at low supply voltage without the need to apply voltage multipliers or low VtMOST devices. A method of implementing the classic single loop and cascaded Delta-Sigma modulator topologies with half delay integrators is presented. Those topologies are studied in order to find the parameters that maximise the performance in terms of peak SNR. Based on a linear model, the performance degradations of higher order single loop and cascaded modulators, compared to a hypothetical ideal modulator, are quantified. An overview of low voltage Switched Capacitor design techniques, such as the use of voltage multipliers, low VtMOST devices and the Switched Opamp Technique, is given. An in-depth discussion of the present status of the Switched Opamp Technique covers the single-ended Original Switched Opamp Technique, the Modified Switched Opamp Technique, which allows lower supply voltage operation, and differential implementation including common mode control techniques. The restrictions imposed on the analog circuits by low supply voltage operation are investigated. Several low voltage circuit building blocks, some of which are new, are discussed. A new low voltage class AB OTA, especially suited for differential Switched Opamp applications, together with a common mode feedback amplifier and a comparator are presented and analyzed. As part of a systematic top-down design approach, the non-ideal charge transfer of the Switched Opamp integrator cell is modeled, based upon several models of the main opamp non-ideal characteristics. Behavioral simulations carried out with these models yield the required opamp specifications that ensure that the intended performance is met in an implementation. A power consumption analysis is performed. The influence of all design parameters, especially the low power supply voltage, is highlighted. Design guidelines towards low power operation are distilled. Two implementations are presented together with measurement results. The first one is a single-ended implementation of a Delta-Sigma ADC operating with 1.5V supply voltage and consuming 100 &mgr;W for a 74 dB dynamic range in a 3.4 kHz bandwidth. The second implementation is differential and operates with 900 mV. It achieves 77 dB dynamic range in 16 kHz bandwidth and consumes 40 &mgr;W. Design of Low-Voltage Low-Power CMOS Delta-Sigma A/D Converters is essential reading for analog design engineers and researchers.

Low-Power Low-Voltage Sigma-Delta Modulators in Nanometer CMOS

Low-Power Low-Voltage Sigma-Delta Modulators in Nanometer CMOS
Author: Libin Yao
Publisher: Springer Science & Business Media
Total Pages: 180
Release: 2006-07-09
Genre: Technology & Engineering
ISBN: 1402041403

Download Low-Power Low-Voltage Sigma-Delta Modulators in Nanometer CMOS Book in PDF, Epub and Kindle

this book is not suitable for the bookstore catalogue

Robust Sigma Delta Converters

Robust Sigma Delta Converters
Author: Robert H.M. van Veldhoven
Publisher: Springer Science & Business Media
Total Pages: 306
Release: 2011-01-30
Genre: Technology & Engineering
ISBN: 9400706448

Download Robust Sigma Delta Converters Book in PDF, Epub and Kindle

Sigma Delta converters are a very popular choice for the A/D converter in multi-standard, mobile and cellular receivers. Key A/D converter specifications are high dynamic range, robustness, scalability, low-power and low EMI. Robust Sigma Delta Converters presents a requirement derivation of a Sigma Delta modulator applied in a receiver for cellular and connectivity, and shows trade-offs between RF and ADC. The book proposes to categorize these requirements in 5 quality indicators which can be used to qualify a system, namely accuracy, robustness, flexibility, efficiency and emission. In the book these quality indicators are used to categorize Sigma Delta converter theory. A few highlights on each of these quality indicators are; Quality indicators: provide a means to quantify system quality. Accuracy: introduction of new Sigma Delta Modulator architectures. Robustness: a significant extension on clock jitter theory based on phase and error amplitude error models. Extension of the theory describing aliasing in Sigma Delta converters for different types of DACs in the feedback loop. Flexibility: introduction of a Sigma Delta converter bandwidth scaling theory leading to very flexible Sigma Delta converters. Efficiency: introduction of new Figure-of-Merits which better reflect performance-power trade-offs. Emission: analysis of Sigma Delta modulators on emission is not part of the book The quality indicators also reveal that, to exploit nowadays advanced IC technologies, things should be done as much as possible digital up to a limit where system optimization allows reducing system margins. At the end of the book Sigma Delta converter implementations are shown which are digitized on application-, architecture-, circuit- and layout-level. Robust Sigma Delta Converters is written under the assumption that the reader has some background in receivers and in A/D conversion.

CMOS Sigma-Delta Converters

CMOS Sigma-Delta Converters
Author: Jose M. de la Rosa
Publisher: John Wiley & Sons
Total Pages: 463
Release: 2013-03-13
Genre: Technology & Engineering
ISBN: 1118568435

Download CMOS Sigma-Delta Converters Book in PDF, Epub and Kindle

A comprehensive overview of Sigma-Delta Analog-to-Digital Converters (ADCs) and a practical guide to their design in nano-scale CMOS for optimal performance. This book presents a systematic and comprehensive compilation of sigma-delta converter operating principles, the new advances in architectures and circuits, design methodologies and practical considerations − going from system-level specifications to silicon integration, packaging and measurements, with emphasis on nanometer CMOS implementation. The book emphasizes practical design issues – from high-level behavioural modelling in MATLAB/SIMULINK, to circuit-level implementation in Cadence Design FrameWork II. As well as being a comprehensive reference to the theory, the book is also unique in that it gives special importance on practical issues, giving a detailed description of the different steps that constitute the whole design flow of sigma-delta ADCs. The book begins with an introductory survey of sigma-delta modulators, their fundamentals architectures and synthesis methods covered in Chapter 1. In Chapter 2, the effect of main circuit error mechanisms is analysed, providing the necessary understanding of the main practical issues affecting the performance of sigma-delta modulators. The knowledge derived from the first two chapters is presented in the book as an essential part of the systematic top-down/bottom-up synthesis methodology of sigma-delta modulators described in Chapter 3, where a time-domain behavioural simulator named SIMSIDES is described and applied to the high-level design and verification of sigma-delta ADCs. Chapter 4 moves farther down from system-level to the circuit and physical level, providing a number of design recommendations and practical recipes to complete the design flow of sigma-delta modulators. To conclude the book, Chapter 5 gives an overview of the state-of-the-art sigma-delta ADCs, which are exhaustively analysed in order to extract practical design guidelines and to identify the incoming trends, design challenges as well as practical solutions proposed by cutting-edge designs. Offers a complete survey of sigma-delta modulator architectures from fundamentals to state-of-the art topologies, considering both switched-capacitor and continuous-time circuit implementations Gives a systematic analysis and practical design guide of sigma-delta modulators, from a top-down/bottom-up perspective, including mathematical models and analytical procedures, behavioural modeling in MATLAB/SIMULINK, macromodeling, and circuit-level implementation in Cadence Design FrameWork II, chip prototyping, and experimental characterization. Systematic compilation of cutting-edge sigma-delta modulators Complete description of SIMSIDES, a time-domain behavioural simulator implemented in MATLAB/SIMULINK Plenty of examples, case studies, and simulation test benches, covering the different stages of the design flow of sigma-delta modulators A number of electronic resources, including SIMSIDES, the statistical data used in the state-of-the-art survey, as well as many design examples and test benches are hosted on a companion website Essential reading for Researchers and electronics engineering practitioners interested in the design of high-performance data converters integrated in nanometer CMOS technologies; mixed-signal designers.

Sigma-Delta Converters: Practical Design Guide

Sigma-Delta Converters: Practical Design Guide
Author: Jose M. de la Rosa
Publisher: John Wiley & Sons
Total Pages: 581
Release: 2018-11-05
Genre: Technology & Engineering
ISBN: 1119275784

Download Sigma-Delta Converters: Practical Design Guide Book in PDF, Epub and Kindle

Thoroughly revised and expanded to help readers systematically increase their knowledge and insight about Sigma-Delta Modulators Sigma-Delta Modulators (SDMs) have become one of the best choices for the implementation of analog/digital interfaces of electronic systems integrated in CMOS technologies. Compared to other kinds of Analog-to-Digital Converters (ADCs), Σ∆Ms cover one of the widest conversion regions of the resolution-versus-bandwidth plane, being the most efficient solution to digitize signals in an increasingly number of applications, which span from high-resolution low-bandwidth digital audio, sensor interfaces, and instrumentation, to ultra-low power biomedical systems and medium-resolution broadband wireless communications. Following the spirit of its first edition, Sigma-Delta Converters: Practical Design Guide, 2nd Edition takes a comprehensive look at SDMs, their diverse types of architectures, circuit techniques, analysis synthesis methods, and CAD tools, as well as their practical design considerations. It compiles and updates the current research reported on the topic, and explains the multiple trade-offs involved in the whole design flow of Sigma-Delta Modulators—from specifications to chip implementation and characterization. The book follows a top-down approach in order to provide readers with the necessary understanding about recent advances, trends, and challenges in state-of-the-art Σ∆Ms. It makes more emphasis on two key points, which were not treated so deeply in the first edition: It includes a more detailed explanation of Σ∆Ms implemented using Continuous-Time (CT) circuits, going from system-level synthesis to practical circuit limitations. It provides more practical case studies and applications, as well as a deeper description of the synthesis methodologies and CAD tools employed in the design of Σ∆ converters. Sigma-Delta Converters: Practical Design Guide, 2nd Edition serves as an excellent textbook for undergraduate and graduate students in electrical engineering as well as design engineers working on SD data-converters, who are looking for a uniform and self-contained reference in this hot topic. With this goal in mind, and based on the feedback received from readers, the contents have been revised and structured to make this new edition a unique monograph written in a didactical, pedagogical, and intuitive style.

Top-Down Design of High-Performance Sigma-Delta Modulators

Top-Down Design of High-Performance Sigma-Delta Modulators
Author: Fernando Medeiro
Publisher: Springer Science & Business Media
Total Pages: 303
Release: 2013-04-18
Genre: Technology & Engineering
ISBN: 1475730039

Download Top-Down Design of High-Performance Sigma-Delta Modulators Book in PDF, Epub and Kindle

The interest for :I:~ modulation-based NO converters has significantly increased in the last years. The reason for that is twofold. On the one hand, unlike other converters that need accurate building blocks to obtain high res olution, :I:~ converters show low sensitivity to the imperfections of their building blocks. This is achieved through extensive use of digital signal pro cessing - a desirable feature regarding the implementation of NO interfaces in mainstream CMOS technologies which are better suited for implementing fast, dense, digital circuits than accurate analog circuits. On the other hand, the number of applications with industrial interest has also grown. In fact, starting from the earliest in the audio band, today we can find :I:~ converters in a large variety of NO interfaces, ranging from instrumentation to commu nications. These advances have been supported by a number of research works that have lead to a considerably large amount of published papers and books cov ering different sub-topics: from purely theoretical aspects to architecture and circuit optimization. However, so much material is often difficultly digested by those unexperienced designers who have been committed to developing a :I:~ converter, mainly because there is a lack of methodology. In our view, a clear methodology is necessary in :I:~ modulator design because all related tasks are rather hard.

Low-power High-speed High-resolution Delta-sigma Modulators for Digital TV Receivers in Nanometer CMOS

Low-power High-speed High-resolution Delta-sigma Modulators for Digital TV Receivers in Nanometer CMOS
Author: Mostafa Haroun
Publisher:
Total Pages:
Release: 2014
Genre:
ISBN:

Download Low-power High-speed High-resolution Delta-sigma Modulators for Digital TV Receivers in Nanometer CMOS Book in PDF, Epub and Kindle

"The use of high-speed high-resolution analog-to-digital converters (ADCs) allows part of the signal processing to be done in the digital domain allowing for higher system integration and cheaper fabrication. Becoming more in use, hand-held devices have low-power requirements to allow for longer battery life. Also, designing ADCs in nanometer digital CMOS technologies make them more integrable with digital processing blocks and cheaper. This thesis aims at designing a high-speed (16MS/s conversion rate) high-resolution (12bits) Delta-Sigma modulator with low-power consumption in nanometer CMOS. Delta-Sigma modulators can achieve high resolution in low and medium speed applications. For higher speed applications, the oversampling ratio (OSR) will have to be kept low to avoid inefficient design. However, lowering the OSR requires special care in the design starting from the architecture until the full circuit implementation. In nanometer CMOS technologies, analog properties, such as intrinsic gain, degrade which might result in a higher power consumption. Moreover, the low nominal supply voltages associated with such technologies adds more challenges to the design of a low distortion power-efficient Delta-Sigma modulator. Targeting a specic resolution, lowering the voltage supply usually results in a higher power consumption. This thesis suggests possible solutions to achieve low power consumption while targeting high-speed applications in nanometer low-voltage-supply environment.This thesis presents a low-power Discrete-Time (DT) Delta-Sigma modulator making use of a single-loop multibit DT digital input-feedforward Delta-Sigma architecture. The main feature of this architecture is the reduced signal swings at the output of the integrators which allows the use of a low voltage supply. The low-power Switched-Capacitor (SC) implementation is ensured by using a novel opamp switching technique, optimizing simultaneous opamp's settling in cascaded nondelaying SC integrators, and using non-overlapping clock phases with unequal duty-cycles. The novel opamp switching technique is based on a current-mirror opamp with switchable transconductances. The current-mirror opamp works with full current during the charge-transfer phase while the output current is partially switched off during the sampling phase. Power saving can be achieved while ensuring that the opamp output is available during both phases. The simultaneous settling of series opamps in a two cascaded nondelaying SC integrators scheme is looked at as a two-pole system where power optimization is necessary to ensure minimum power consumption while meeting the settling requirements. The use of clock phases with unequal duty-cycles gives the designer an extra degree of freedom to further power optimize the design. The experimental Delta-Sigma ADC is a 4th-order 5.5bits single-loop Delta-Sigma modulator with an OSR of 8. The design starts with the structural-level aspects in which system-level decisions are made and simulations are carried-out with behavioral models to find the suitable circuit parameters. Circuit-level design in then considered to design each block and simulate the full-system. Fabricated in 1V 65nm CMOS, the Delta-Sigma modulator prototype occupies an active area of 1.2mm2. Although the targeted resolution is about 12bits, the experimental results shows a dynamic range (DR) of 66dB (11bits) over an 8MHz bandwidth while consuming 26mW and a peak SNR/SNDR of 64/58.5dB. The proposed opamp switching technique brings the total power consumption from 29mW to 26mW without affecting the performance (SNDR stays at 58.5dB). The deviation in experimental performance, from simulations, in thought to be due to higher parasitic capacitance requiring higher bias currents which results in drop of opamp dc gain. Compared to state of the art high-speed high-resolution Delta-Sigma modulators operated from 1V supply and fabricated in CMOS, it achieves a reasonable Figure-of-Merit." --