Low-dimensional Electron Transport in Mesoscopic Semiconductor Devices

Low-dimensional Electron Transport in Mesoscopic Semiconductor Devices
Author: Theodore Peyton Martin
Publisher:
Total Pages: 196
Release: 2006
Genre: Electron transport
ISBN: 9781109902822

Download Low-dimensional Electron Transport in Mesoscopic Semiconductor Devices Book in PDF, Epub and Kindle

Recent advances in solid state materials engineering have led to mesoscopic devices with feature sizes that approach the fundamental quantum wavelength of charge carriers in the solid, allowing for the experimental observation of quantum interference. By confining carriers to a single quantum state in one or more dimensions, the degrees of freedom for charge transport can be reduced to achieve new device functionality. This dissertation focuses on mesoscopic electron billiards that combine the aspects of zero, one, and two-dimensional transport into one system. Low-temperature measurement of billiards fabricated within a relatively defect-free semiconductor heterostructure results in ballistic transport, where the electron waves follow classical trajectories and the confining walls play a major role in determining the electron interference. Billiards have been traditionally formed by applying a bias to patterned surface gates atop an AlGaAs/GaAs heterostructure. Within this system, fractal fluctuations in the billiard conductance are observed as a function of an applied external magnetic field. These fluctuations are tied to quantum interference via an empirical parameter that describes the resolution of energy levels within the billiard. To investigate whether fractal fluctuations are a robust phenomenon intrinsic to billiard-like structures, this study centers on billiards defined by etching walls into a GaInAs/InP heterostructure, departing from the traditional system in both the type of confinement and material system used. It is expected that etched walls will provide a steeper confinement profile leading to well-defined device shapes. Conductance measurements through the one-dimensional leads that couple electrons into the billiard are utilized in combination with a self-consistent Schrodinger/Poisson solution to demonstrate a steeper confinement potential. Experiments are also carried out to determine whether fractal fluctuations persist when billiards are coupled together to form arrays. While fractal scaling is observed in solitary etched billiards, conditions arise in which the fluctuations depart from fractal scaling in both single billiards and arrays. An analysis of the phase-breaking time governing quantum interference reveals a fundamental transition in the interference behavior between single billiards and arrays. Concluding remarks discuss the possibility of the observation of fractal fluctuations in nanoscale particles at higher temperatures.

Electronic Transport in Mesoscopic Systems

Electronic Transport in Mesoscopic Systems
Author: Supriyo Datta
Publisher: Cambridge University Press
Total Pages: 398
Release: 1997-05-15
Genre: Science
ISBN: 1139643010

Download Electronic Transport in Mesoscopic Systems Book in PDF, Epub and Kindle

Advances in semiconductor technology have made possible the fabrication of structures whose dimensions are much smaller than the mean free path of an electron. This book gives a thorough account of the theory of electronic transport in such mesoscopic systems. After an initial chapter covering fundamental concepts, the transmission function formalism is presented, and used to describe three key topics in mesoscopic physics: the quantum Hall effect; localisation; and double-barrier tunnelling. Other sections include a discussion of optical analogies to mesoscopic phenomena, and the book concludes with a description of the non-equilibrium Green's function formalism and its relation to the transmission formalism. Complete with problems and solutions, the book will be of great interest to graduate students of mesoscopic physics and nanoelectronic device engineering, as well as to established researchers in these fields.

Low-Dimensional Semiconductor Structures

Low-Dimensional Semiconductor Structures
Author: Keith Barnham
Publisher: Cambridge University Press
Total Pages: 409
Release: 2001-07-12
Genre: Science
ISBN: 0521591031

Download Low-Dimensional Semiconductor Structures Book in PDF, Epub and Kindle

Low-Dimensional Semiconductor Structures provides a seamless, atoms-to-devices introduction to the latest quantum heterostructures. It covers their fabrication, their electronic, optical and transport properties, their role in exploring physical phenomena, and their utilization in devices. The authors begin with a detailed description of the epitaxial growth of semiconductors. They then deal with the physical behaviour of electrons and phonons in low-dimensional structures. A discussion of localization effects and quantum transport phenomena is followed by coverage of the optical properties of quantum wells. They then go on to discuss non-linear optics in quantum heterostructures. The final chapters deal with semiconductor lasers, mesoscopic devices, and high-speed heterostructure devices. The book contains many exercises and comprehensive references. It is suitable as a textbook for graduate-level courses in electrical engineering and applied physics. It will also be of interest to engineers involved in the development of semiconductor devices.

Theory of Electron Transport in Semiconductors

Theory of Electron Transport in Semiconductors
Author: Carlo Jacoboni
Publisher: Springer Science & Business Media
Total Pages: 590
Release: 2010-09-05
Genre: Science
ISBN: 3642105866

Download Theory of Electron Transport in Semiconductors Book in PDF, Epub and Kindle

This book originated out of a desire to provide students with an instrument which might lead them from knowledge of elementary classical and quantum physics to moderntheoreticaltechniques for the analysisof electrontransport in semiconductors. The book is basically a textbook for students of physics, material science, and electronics. Rather than a monograph on detailed advanced research in a speci?c area, it intends to introduce the reader to the fascinating ?eld of electron dynamics in semiconductors, a ?eld that, through its applications to electronics, greatly contributed to the transformationof all our lives in the second half of the twentieth century, and continues to provide surprises and new challenges. The ?eld is so extensive that it has been necessary to leave aside many subjects, while others could be dealt with only in terms of their basic principles. The book is divided into ?ve major parts. Part I moves from a survey of the fundamentals of classical and quantum physics to a brief review of basic semiconductor physics. Its purpose is to establish a common platform of language and symbols, and to make the entire treatment, as far as pos- ble, self-contained. Parts II and III, respectively, develop transport theory in bulk semiconductors in semiclassical and quantum frames. Part IV is devoted to semiconductor structures, including devices and mesoscopic coherent s- tems. Finally, Part V develops the basic theoretical tools of transport theory within the modern nonequilibrium Green-function formulation, starting from an introduction to second-quantization formalism.

Electronic Quantum Transport in Mesoscopic Semiconductor Structures

Electronic Quantum Transport in Mesoscopic Semiconductor Structures
Author: Thomas Ihn
Publisher: Springer Science & Business Media
Total Pages: 267
Release: 2004-01-08
Genre: Science
ISBN: 0387400966

Download Electronic Quantum Transport in Mesoscopic Semiconductor Structures Book in PDF, Epub and Kindle

Opening with a brief historical account of electron transport from Ohm's law through transport in semiconductor nanostructures, this book discusses topics related to electronic quantum transport. The book is written for graduate students and researchers in the field of mesoscopic semiconductors or in semiconductor nanostructures. Highlights include review of the cryogenic scanning probe techniques applied to semiconductor nanostructures.

Balance Equation Approach to Electron Transport In Semiconductors

Balance Equation Approach to Electron Transport In Semiconductors
Author: Xiaolin Lei
Publisher: World Scientific
Total Pages: 657
Release: 2008
Genre: Technology & Engineering
ISBN: 9812819029

Download Balance Equation Approach to Electron Transport In Semiconductors Book in PDF, Epub and Kindle

This book presents a systematic, comprehensive and up-to-date description of the physical basis of the balance equation transport theory and its applications in bulk and low-dimensional semiconductors. The different aspects of the balance equation method, originally proposed by C S Ting and the author of the present book, were reviewed in the volume entitled Physics of Hot Electron Transport in Semiconductors (edited by C S Ting, World Scientific, 1992). Since then, this method has been extensively developed and applied to various new fields, such as transport in nonparabolic systems, spatially nonuniform systems and semiconductor devices, miniband conduction of superlattices, hot-electron magnetotransport, effects of impact ionization in transport, microwave-induced magnetoresistance oscillation, radiation-driven transport and electron cooling, etc. Due to its simplicity and effectiveness, the balance equation approach has become a useful tool to tackle the many transport phenomena in semiconductors, and provides a reliable basis for developing theories, modeling devices and explaining experiments.The book may be used as a textbook by graduate students. It will also benefit researchers in the field by helping them grasp the basic principles and techniques of the method, without having to spend a lot of time digging out the information from widespread literature covering a period of 30 years.

Low-Dimensional Systems

Low-Dimensional Systems
Author: Tobias Brandes
Publisher: Springer
Total Pages: 220
Release: 2008-01-11
Genre: Science
ISBN: 3540464387

Download Low-Dimensional Systems Book in PDF, Epub and Kindle

Experimental progress over the past few years has made it possible to test a n- ber of fundamental physical concepts related to the motion of electrons in low dimensions. The production and experimental control of novel structures with typical sizes in the sub-micrometer regime has now become possible. In parti- lar, semiconductors are widely used in order to con?ne the motion of electrons in two-dimensional heterostructures. The quantum Hall e?ect was one of the ?rst highlights of the new physics that is revealed by this con?nement. In a further step of the technological development in semiconductor-heterostructures, other arti?cial devices such as quasi one-dimensional ‘quantum wires’ and ‘quantum dots’ (arti?cial atoms) have also been produced. These structures again di?er very markedly from three- and two-dimensional systems, especially in relation to the transport of electrons and the interaction with light. Although the technol- ical advances and the experimental skills connected with these new structures are progressing extremely fast, our theoretical understanding of the physical e?ects (such as the quantum Hall e?ect) is still at a very rudimentary level. In low-dimensional structures, the interaction of electrons with one another and with other degrees of freedoms such as lattice vibrations or light gives rise to new phenomena that are very di?erent from those familiar in the bulk ma- rial. The theoretical formulation of the electronic transport properties of small devices may be considered well-established, provided interaction processes are neglected.

Mesoscopic Physics and Electronics

Mesoscopic Physics and Electronics
Author: Tsuneya Ando
Publisher: Springer Science & Business Media
Total Pages: 293
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 3642719767

Download Mesoscopic Physics and Electronics Book in PDF, Epub and Kindle

Semiconductor technology has developed considerably during the past several decades. The exponential growth in microelectronic processing power has been achieved by a constant scaling down of integrated cir,cuits. Smaller fea ture sizes result in increased functional density, faster speed, and lower costs. One key ingredient of the LSI technology is the development of the lithog raphy and microfabrication. The current minimum feature size is already as small as 0.2 /tm, beyond the limit imposed by the wavelength of visible light and rapidly approaching fundamental limits. The next generation of devices is highly likely to show unexpected properties due to quantum effects and fluctuations. The device which plays an important role in LSIs is MOSFETs (metal oxide-semiconductor field-effect transistors). In MOSFETs an inversion layer is formed at the interface of silicon and its insulating oxide. The inversion layer provides a unique two-dimensional (2D) system in which the electron concentration is controlled almost freely over a very wide range. Physics of such 2D systems was born in the mid-1960s together with the development of MOSFETs. The integer quantum Hall effect was first discovered in this system.

Charge Transport in Low Dimensional Semiconductor Structures

Charge Transport in Low Dimensional Semiconductor Structures
Author: Vito Dario Camiola
Publisher: Springer Nature
Total Pages: 344
Release: 2020-03-02
Genre: Science
ISBN: 303035993X

Download Charge Transport in Low Dimensional Semiconductor Structures Book in PDF, Epub and Kindle

This book offers, from both a theoretical and a computational perspective, an analysis of macroscopic mathematical models for description of charge transport in electronic devices, in particular in the presence of confining effects, such as in the double gate MOSFET. The models are derived from the semiclassical Boltzmann equation by means of the moment method and are closed by resorting to the maximum entropy principle. In the case of confinement, electrons are treated as waves in the confining direction by solving a one-dimensional Schrödinger equation obtaining subbands, while the longitudinal transport of subband electrons is described semiclassically. Limiting energy-transport and drift-diffusion models are also obtained by using suitable scaling procedures. An entire chapter in the book is dedicated to a promising new material like graphene. The models appear to be sound and sufficiently accurate for systematic use in computer-aided design simulators for complex electron devices. The book is addressed to applied mathematicians, physicists, and electronic engineers. It is written for graduate or PhD readers but the opening chapter contains a modicum of semiconductor physics, making it self-consistent and useful also for undergraduate students.