Lectures on Quantum Computing, Thermodynamics and Statistical Physics

Lectures on Quantum Computing, Thermodynamics and Statistical Physics
Author: Mikio Nakahara
Publisher: World Scientific
Total Pages: 199
Release: 2013
Genre: Computers
ISBN: 9814425192

Download Lectures on Quantum Computing, Thermodynamics and Statistical Physics Book in PDF, Epub and Kindle

This book is a collection of lecture notes from the Symposium on Quantum Computing, Thermodynamics, and Statistical Physics, held at Kinki University in March 2012. Quantum information theory has a deep connection with statistical physics and thermodynamics. This volume introduces some of the topics on interface among the mentioned fields. Subjects included in the lecture notes include quantum annealing method, nonequilibrium thermodynamics and spin glass theory, among others. These subjects were presented with much emphasis put in its relevance in quantum information theory. These lecture notes are prepared in a self-contained manner so that a reader with modest background may understand the subjects.

A Guide to Physics Problems

A Guide to Physics Problems
Author: Sidney B. Cahn
Publisher: Springer Science & Business Media
Total Pages: 366
Release: 2007-05-08
Genre: Science
ISBN: 0306484013

Download A Guide to Physics Problems Book in PDF, Epub and Kindle

In order to equip hopeful graduate students with the knowledge necessary to pass the qualifying examination, the authors have assembled and solved standard and original problems from major American universities – Boston University, University of Chicago, University of Colorado at Boulder, Columbia, University of Maryland, University of Michigan, Michigan State, Michigan Tech, MIT, Princeton, Rutgers, Stanford, Stony Brook, University of Tennessee at Knoxville, and the University of Wisconsin at Madison – and Moscow Institute of Physics and Technology. A wide range of material is covered and comparisons are made between similar problems of different schools to provide the student with enough information to feel comfortable and confident at the exam. Guide to Physics Problems is published in two volumes: this book, Part 2, covers Thermodynamics, Statistical Mechanics and Quantum Mechanics; Part 1, covers Mechanics, Relativity and Electrodynamics. Praise for A Guide to Physics Problems: Part 2: Thermodynamics, Statistical Physics, and Quantum Mechanics: "... A Guide to Physics Problems, Part 2 not only serves an important function, but is a pleasure to read. By selecting problems from different universities and even different scientific cultures, the authors have effectively avoided a one-sided approach to physics. All the problems are good, some are very interesting, some positively intriguing, a few are crazy; but all of them stimulate the reader to think about physics, not merely to train you to pass an exam. I personally received considerable pleasure in working the problems, and I would guess that anyone who wants to be a professional physicist would experience similar enjoyment. ... This book will be a great help to students and professors, as well as a source of pleasure and enjoyment." (From Foreword by Max Dresden) "An excellent resource for graduate students in physics and, one expects, also for their teachers." (Daniel Kleppner, Lester Wolfe Professor of Physics Emeritus, MIT) "A nice selection of problems ... Thought-provoking, entertaining, and just plain fun to solve." (Giovanni Vignale, Department of Physics and Astronomy, University of Missouri at Columbia) "Interesting indeed and enjoyable. The problems are ingenious and their solutions very informative. I would certainly recommend it to all graduate students and physicists in general ... Particularly useful for teachers who would like to think about problems to present in their course." (Joel Lebowitz, Rutgers University) "A very thoroughly assembled, interesting set of problems that covers the key areas of physics addressed by Ph.D. qualifying exams. ... Will prove most useful to both faculty and students. Indeed, I plan to use this material as a source of examples and illustrations that will be worked into my lectures." (Douglas Mills, University of California at Irvine)

Lectures On Thermodynamics And Statistical Mechanics - Proceedings Of The Xxiii Winter Meeting On Statistical Physics

Lectures On Thermodynamics And Statistical Mechanics - Proceedings Of The Xxiii Winter Meeting On Statistical Physics
Author: M Costas
Publisher: World Scientific
Total Pages: 293
Release: 1994-12-09
Genre:
ISBN: 9814550329

Download Lectures On Thermodynamics And Statistical Mechanics - Proceedings Of The Xxiii Winter Meeting On Statistical Physics Book in PDF, Epub and Kindle

This volume deals with topics of contemporary interest covering both experimental results and theoretical considerations. Different aspects of the physics and chemistry of the vitreous state are discussed in a series of three lectures by internationally respected researchers on the statistical physics of glasses.A wide range of topics in statistical physics such as critical behaviour, computer simulations of colloid aggregation, kinetic theory of tunneling diffusion, normal mode analysis of liquids and neutron scattering in C60 are also covered. This book provides a useful survey and will be of interest to researchers.

Interface Between Quantum Information and Statistical Physics

Interface Between Quantum Information and Statistical Physics
Author: Mikio Nakahara
Publisher: World Scientific
Total Pages: 278
Release: 2012
Genre: Computers
ISBN: 9814425273

Download Interface Between Quantum Information and Statistical Physics Book in PDF, Epub and Kindle

This book is a collection of contributions to the Symposium on Interface between Quantum Information and Statistical Physics held at Kinki University in November 2011. Subjects of the symposium include quantum adiabatic computing, quantum simulator using bosons, classical statistical physics, among others. Contributions to this book are prepared in a self-contained manner so that a reader with a modest background may understand the subjects.

Quantum Steampunk

Quantum Steampunk
Author: Nicole Yunger Halpern
Publisher: JHU Press
Total Pages: 305
Release: 2022-04-12
Genre: Science
ISBN: 1421443732

Download Quantum Steampunk Book in PDF, Epub and Kindle

The Industrial Revolution meets the quantum-technology revolution! A steampunk adventure guide to how mind-blowing quantum physics is transforming our understanding of information and energy. Victorian era steam engines and particle physics may seem worlds (as well as centuries) apart, yet a new branch of science, quantum thermodynamics, reenvisions the scientific underpinnings of the Industrial Revolution through the lens of today's roaring quantum information revolution. Classical thermodynamics, understood as the study of engines, energy, and efficiency, needs reimagining to take advantage of quantum mechanics, the basic framework that explores the nature of reality by peering at minute matters, down to the momentum of a single particle. In her exciting new book, intrepid Harvard-trained physicist Dr. Nicole Yunger Halpern introduces these concepts to the uninitiated with what she calls "quantum steampunk," after the fantastical genre that pairs futuristic technologies with Victorian sensibilities. While readers follow the adventures of a rag-tag steampunk crew on trains, dirigibles, and automobiles, they explore questions such as, "Can quantum physics revolutionize engines?" and "What deeper secrets can quantum information reveal about the trajectory of time?" Yunger Halpern also describes her own adventures in the quantum universe and provides an insider's look at the work of the scientists obsessed with its technological promise. Moving from fundamental physics to cutting-edge experimental applications, Quantum Steampunk explores the field's aesthetic, shares its whimsy, and gazes into the potential of a quantum future. The result is a blast for fans of science, science fiction, and fantasy.

The Complexity of Noise

The Complexity of Noise
Author: Amit Hagar
Publisher: Springer Nature
Total Pages: 71
Release: 2022-05-31
Genre: Mathematics
ISBN: 3031025148

Download The Complexity of Noise Book in PDF, Epub and Kindle

In quantum computing, where algorithms exist that can solve computational problems more efficiently than any known classical algorithms, the elimination of errors that result from external disturbances or from imperfect gates has become the "holy grail", and a worldwide quest for a large scale fault-tolerant, and computationally superior, quantum computer is currently taking place. Optimists rely on the premise that, under a certain threshold of errors, an arbitrary long fault-tolerant quantum computation can be achieved with only moderate (i.e., at most polynomial) overhead in computational cost. Pessimists, on the other hand, object that there are in principle (as opposed to merely technological) reasons why such machines are still inexistent, and that no matter what gadgets are used, large scale quantum computers will never be computationally superior to classical ones. Lacking a complete empirical characterization of quantum noise, the debate on the physical possibility of such machines invites philosophical scrutiny. Making this debate more precise by suggesting a novel statistical mechanical perspective thereof is the goal of this project. Table of Contents: Introduction / The Curse of the Open System / To Balance a Pencil on Its Tip / Universality at All Cost / Coda

Interface Between Quantum Information and Statistical Physics

Interface Between Quantum Information and Statistical Physics
Author: Mikio Nakahara
Publisher: World Scientific
Total Pages: 278
Release: 2013
Genre: Computers
ISBN: 9814425281

Download Interface Between Quantum Information and Statistical Physics Book in PDF, Epub and Kindle

This book is a collection of contributions to the Symposium on Interface between Quantum Information and Statistical Physics held at Kinki University in November 2011. Subjects of the symposium include quantum adiabatic computing, quantum simulator using bosons, classical statistical physics, among others. Contributions to this book are prepared in a self-contained manner so that a reader with a modest background may understand the subjects.

Quantum Information and Quantum Computing

Quantum Information and Quantum Computing
Author: Mikio Nakahara
Publisher: World Scientific
Total Pages: 194
Release: 2013
Genre: Computers
ISBN: 9814425222

Download Quantum Information and Quantum Computing Book in PDF, Epub and Kindle

The open research center project "Interdisciplinary fundamental research toward realization of a quantum computer" has been supported by the Ministry of Education, Japan for five years. This is a collection of the research outcomes by the members engaged in the project. To make the presentation self-contained, it starts with an overview by Mikio Nakahara, which serves as a concise introduction to quantum information and quantum computing. Subsequent contributions include subjects from physics, chemistry, mathematics, and information science, reflecting upon the wide variety of scientists working under this project. These contributions introduce NMR quantum computing and related techniques, number theory and coding theory, quantum error correction, photosynthesis, non-classical correlations and entanglement, neutral atom quantum computer, among others. Each of the contributions will serve as a short introduction to these cutting edge research fields.

Lectures on Quantum Statistics

Lectures on Quantum Statistics
Author: Werner Ebeling
Publisher: Springer
Total Pages: 271
Release: 2019-05-11
Genre: Science
ISBN: 3030057348

Download Lectures on Quantum Statistics Book in PDF, Epub and Kindle

Most of the matter in our universe is in a gaseous or plasma state. Yet, most textbooks on quantum statistics focus on examples from and applications in condensed matter systems, due to the prevalence of solids and liquids in our day-to-day lives. In an attempt to remedy that oversight, this book consciously focuses on teaching the subject matter in the context of (dilute) gases and plasmas, while aiming primarily at graduate students and young researchers in the field of quantum gases and plasmas for some of the more advanced topics. The majority of the material is based on a two-semester course held jointly by the authors over many years, and has benefited from extensive feedback provided by countless students and co-workers. The book also includes many historical remarks on the roots of quantum statistics: firstly because students appreciate and are strongly motivated by looking back at the history of a given field of research, and secondly because the spirit permeating this book has been deeply influenced by meetings and discussions with several pioneers of quantum statistics over the past few decades.

Thermodynamics of Information Processing in Small Systems

Thermodynamics of Information Processing in Small Systems
Author: Takahiro Sagawa
Publisher: Springer Science & Business Media
Total Pages: 126
Release: 2012-09-14
Genre: Science
ISBN: 4431541683

Download Thermodynamics of Information Processing in Small Systems Book in PDF, Epub and Kindle

This thesis presents a general theory of nonequilibrium thermodynamics for information processing. Ever since Maxwell's demon was proposed in the nineteenth century, the relationship between thermodynamics and information has attracted much attention because it concerns the foundation of the second law of thermodynamics. From the modern point of view, Maxwell's demon is formulated as an information processing device that performs measurement and feedback at the level of thermal fluctuations. By unifying information theory, measurement theory, and the recently developed theory of nonequilibrium statistical mechanics, the author has constructed a theory of "information thermodynamics," in which information contents and thermodynamic variables are treated on an equal footing. In particular, the maximum work that can be extracted by the demon and the minimum work that is needed for measurement and information erasure by the demon has been determined. Additionally, generalizations of nonequilibrium relations such as a Jarzynski equality for classical stochastic systems in the presence of feedback control have been derived. One of the generalized equalities has recently been verified experimentally by using sub-micron colloidal particles. The results obtained serve as fundamental principles for information processing in small thermodynamic systems, and are applicable to nanomachines and nanodevices.