Learning SciPy for Numerical and Scientific Computing - Second Edition

Learning SciPy for Numerical and Scientific Computing - Second Edition
Author: Sergio J. Rojas G.
Publisher: Packt Publishing Ltd
Total Pages: 188
Release: 2015-02-26
Genre: Computers
ISBN: 1783987715

Download Learning SciPy for Numerical and Scientific Computing - Second Edition Book in PDF, Epub and Kindle

This book targets programmers and scientists who have basic Python knowledge and who are keen to perform scientific and numerical computations with SciPy.

Learning SciPy for Numerical and Scientific Computing - Second Edition

Learning SciPy for Numerical and Scientific Computing - Second Edition
Author: Sergio G.
Publisher:
Total Pages: 188
Release: 2015
Genre: Numerical analysis
ISBN:

Download Learning SciPy for Numerical and Scientific Computing - Second Edition Book in PDF, Epub and Kindle

Quick solutions to complex numerical problems in physics, applied mathematics, and science with SciPy In Detail SciPy is an open source Python library used to perform scientific computing. The SciPy (Scientific Python) package extends the functionality of NumPy with a substantial collection of useful algorithms. The book starts with a brief description of the SciPy libraries, followed by a chapter that is a fun and fast-paced primer on array creation, manipulation, and problem-solving. You will also learn how to use SciPy in linear algebra, which includes topics such as computation of eigenvalues and eigenvectors. Furthermore, the book is based on interesting subjects such as definition and manipulation of functions, computation of derivatives, integration, interpolation, and regression. You will also learn how to use SciPy in signal processing and how applications of SciPy can be used to collect, organize, analyze, and interpret data. By the end of the book, you will have fast, accurate, and easy-to-code solutions for numerical and scientific computing applications. What You Will Learn Get to know the benefits of using the combination of Python, NumPy, SciPy, and matplotlib as a programming environment for scientific purposes Create and manipulate an object array used by SciPy Use SciPy with large matrices to compute eigenvalues and eigenvectors Focus on construction, acquisition, quality improvement, compression, and feature extraction of signals Make use of SciPy to collect, organize, analyze, and interpret data, with examples taken from statistics and clustering Acquire the skill of constructing a triangulation of points, convex hulls, Voronoi diagrams, and many similar applications Find out ways that SciPy can be used with other languages such as C/C++, Fortran, and MATLAB/Octave Downloading the example code for this book. You can download the example code files for all Packt books you have purchased from your account at http://www.PacktPub.com. If you purchased this book elsewhere, you can visit http://www.PacktPub.com/support and register to have the files e-mailed directly to you.

Numerical Python

Numerical Python
Author: Robert Johansson
Publisher: Apress
Total Pages: 709
Release: 2018-12-24
Genre: Computers
ISBN: 1484242467

Download Numerical Python Book in PDF, Epub and Kindle

Leverage the numerical and mathematical modules in Python and its standard library as well as popular open source numerical Python packages like NumPy, SciPy, FiPy, matplotlib and more. This fully revised edition, updated with the latest details of each package and changes to Jupyter projects, demonstrates how to numerically compute solutions and mathematically model applications in big data, cloud computing, financial engineering, business management and more. Numerical Python, Second Edition, presents many brand-new case study examples of applications in data science and statistics using Python, along with extensions to many previous examples. Each of these demonstrates the power of Python for rapid development and exploratory computing due to its simple and high-level syntax and multiple options for data analysis. After reading this book, readers will be familiar with many computing techniques including array-based and symbolic computing, visualization and numerical file I/O, equation solving, optimization, interpolation and integration, and domain-specific computational problems, such as differential equation solving, data analysis, statistical modeling and machine learning. What You'll Learn Work with vectors and matrices using NumPy Plot and visualize data with Matplotlib Perform data analysis tasks with Pandas and SciPy Review statistical modeling and machine learning with statsmodels and scikit-learn Optimize Python code using Numba and Cython Who This Book Is For Developers who want to understand how to use Python and its related ecosystem for numerical computing.

Scientific Computing with Python - Second Edition

Scientific Computing with Python - Second Edition
Author: CLAUS. FUHRER
Publisher:
Total Pages: 392
Release: 2021-07-23
Genre:
ISBN: 9781838822323

Download Scientific Computing with Python - Second Edition Book in PDF, Epub and Kindle

Leverage this example-packed, comprehensive guide for all your Python computational needs Key Features: Learn the first steps within Python to highly specialized concepts Explore examples and code snippets taken from typical programming situations within scientific computing. Delve into essential computer science concepts like iterating, object-oriented programming, testing, and MPI presented in strong connection to applications within scientific computing. Book Description: Python has tremendous potential within the scientific computing domain. This updated edition of Scientific Computing with Python features new chapters on graphical user interfaces, efficient data processing, and parallel computing to help you perform mathematical and scientific computing efficiently using Python. This book will help you to explore new Python syntax features and create different models using scientific computing principles. The book presents Python alongside mathematical applications and demonstrates how to apply Python concepts in computing with the help of examples involving Python 3.8. You'll use pandas for basic data analysis to understand the modern needs of scientific computing, and cover data module improvements and built-in features. You'll also explore numerical computation modules such as NumPy and SciPy, which enable fast access to highly efficient numerical algorithms. By learning to use the plotting module Matplotlib, you will be able to represent your computational results in talks and publications. A special chapter is devoted to SymPy, a tool for bridging symbolic and numerical computations. By the end of this Python book, you'll have gained a solid understanding of task automation and how to implement and test mathematical algorithms within the realm of scientific computing. What You Will Learn: Understand the building blocks of computational mathematics, linear algebra, and related Python objects Use Matplotlib to create high-quality figures and graphics to draw and visualize results Apply object-oriented programming (OOP) to scientific computing in Python Discover how to use pandas to enter the world of data processing Handle exceptions for writing reliable and usable code Cover manual and automatic aspects of testing for scientific programming Get to grips with parallel computing to increase computation speed Who this book is for: This book is for students with a mathematical background, university teachers designing modern courses in programming, data scientists, researchers, developers, and anyone who wants to perform scientific computation in Python.

Learning SciPy for Numerical and Scientific Computing

Learning SciPy for Numerical and Scientific Computing
Author: Francisco J. Blanco-Silva
Publisher: Packt Publishing
Total Pages: 0
Release: 2013
Genre: Computers
ISBN: 9781782161622

Download Learning SciPy for Numerical and Scientific Computing Book in PDF, Epub and Kindle

A step-by-step practical tutorial with plenty of examples on research-based problems from various areas of science, that prove how simple, yet effective, it is to provide solutions based on SciPy.This book is targeted at anyone with basic knowledge of Python, a somewhat advanced command of mathematics/physics, and an interest in engineering or scientific applications---this is broadly what we refer to as scientific computing.This book will be of critical importance to programmers and scientists who have basic Python knowledge and would like to be able to do scientific and numerical computations with SciPy.

A Primer on Scientific Programming with Python

A Primer on Scientific Programming with Python
Author: Hans Petter Langtangen
Publisher: Springer
Total Pages: 942
Release: 2016-07-28
Genre: Computers
ISBN: 3662498871

Download A Primer on Scientific Programming with Python Book in PDF, Epub and Kindle

The book serves as a first introduction to computer programming of scientific applications, using the high-level Python language. The exposition is example and problem-oriented, where the applications are taken from mathematics, numerical calculus, statistics, physics, biology and finance. The book teaches "Matlab-style" and procedural programming as well as object-oriented programming. High school mathematics is a required background and it is advantageous to study classical and numerical one-variable calculus in parallel with reading this book. Besides learning how to program computers, the reader will also learn how to solve mathematical problems, arising in various branches of science and engineering, with the aid of numerical methods and programming. By blending programming, mathematics and scientific applications, the book lays a solid foundation for practicing computational science. From the reviews: Langtangen ... does an excellent job of introducing programming as a set of skills in problem solving. He guides the reader into thinking properly about producing program logic and data structures for modeling real-world problems using objects and functions and embracing the object-oriented paradigm. ... Summing Up: Highly recommended. F. H. Wild III, Choice, Vol. 47 (8), April 2010 Those of us who have learned scientific programming in Python ‘on the streets’ could be a little jealous of students who have the opportunity to take a course out of Langtangen’s Primer.” John D. Cook, The Mathematical Association of America, September 2011 This book goes through Python in particular, and programming in general, via tasks that scientists will likely perform. It contains valuable information for students new to scientific computing and would be the perfect bridge between an introduction to programming and an advanced course on numerical methods or computational science. Alex Small, IEEE, CiSE Vol. 14 (2), March /April 2012 “This fourth edition is a wonderful, inclusive textbook that covers pretty much everything one needs to know to go from zero to fairly sophisticated scientific programming in Python...” Joan Horvath, Computing Reviews, March 2015

Learning Scientific Programming with Python

Learning Scientific Programming with Python
Author: Christian Hill
Publisher: Cambridge University Press
Total Pages: 572
Release: 2020-11-12
Genre: Science
ISBN: 1108787460

Download Learning Scientific Programming with Python Book in PDF, Epub and Kindle

Learn to master basic programming tasks from scratch with real-life, scientifically relevant examples and solutions drawn from both science and engineering. Students and researchers at all levels are increasingly turning to the powerful Python programming language as an alternative to commercial packages and this fast-paced introduction moves from the basics to advanced concepts in one complete volume, enabling readers to gain proficiency quickly. Beginning with general programming concepts such as loops and functions within the core Python 3 language, and moving on to the NumPy, SciPy and Matplotlib libraries for numerical programming and data visualization, this textbook also discusses the use of Jupyter Notebooks to build rich-media, shareable documents for scientific analysis. The second edition features a new chapter on data analysis with the pandas library and comprehensive updates, and new exercises and examples. A final chapter introduces more advanced topics such as floating-point precision and algorithm stability, and extensive online resources support further study. This textbook represents a targeted package for students requiring a solid foundation in Python programming.

Mastering Python Scientific Computing

Mastering Python Scientific Computing
Author: Hemant Kumar Mehta
Publisher: Packt Publishing Ltd
Total Pages: 301
Release: 2015-09-23
Genre: Computers
ISBN: 1783288833

Download Mastering Python Scientific Computing Book in PDF, Epub and Kindle

A complete guide for Python programmers to master scientific computing using Python APIs and tools About This Book The basics of scientific computing to advanced concepts involving parallel and large scale computation are all covered. Most of the Python APIs and tools used in scientific computing are discussed in detail The concepts are discussed with suitable example programs Who This Book Is For If you are a Python programmer and want to get your hands on scientific computing, this book is for you. The book expects you to have had exposure to various concepts of Python programming. What You Will Learn Fundamentals and components of scientific computing Scientific computing data management Performing numerical computing using NumPy and SciPy Concepts and programming for symbolic computing using SymPy Using the plotting library matplotlib for data visualization Data analysis and visualization using Pandas, matplotlib, and IPython Performing parallel and high performance computing Real-life case studies and best practices of scientific computing In Detail In today's world, along with theoretical and experimental work, scientific computing has become an important part of scientific disciplines. Numerical calculations, simulations and computer modeling in this day and age form the vast majority of both experimental and theoretical papers. In the scientific method, replication and reproducibility are two important contributing factors. A complete and concrete scientific result should be reproducible and replicable. Python is suitable for scientific computing. A large community of users, plenty of help and documentation, a large collection of scientific libraries and environments, great performance, and good support makes Python a great choice for scientific computing. At present Python is among the top choices for developing scientific workflow and the book targets existing Python developers to master this domain using Python. The main things to learn in the book are the concept of scientific workflow, managing scientific workflow data and performing computation on this data using Python. The book discusses NumPy, SciPy, SymPy, matplotlib, Pandas and IPython with several example programs. Style and approach This book follows a hands-on approach to explain the complex concepts related to scientific computing. It details various APIs using appropriate examples.

Elegant SciPy

Elegant SciPy
Author: Juan Nunez-Iglesias
Publisher: "O'Reilly Media, Inc."
Total Pages: 277
Release: 2017-08-11
Genre: Computers
ISBN: 1491922958

Download Elegant SciPy Book in PDF, Epub and Kindle

Welcome to Scientific Python and its community. If you’re a scientist who programs with Python, this practical guide not only teaches you the fundamental parts of SciPy and libraries related to it, but also gives you a taste for beautiful, easy-to-read code that you can use in practice. You’ll learn how to write elegant code that’s clear, concise, and efficient at executing the task at hand. Throughout the book, you’ll work with examples from the wider scientific Python ecosystem, using code that illustrates principles outlined in the book. Using actual scientific data, you’ll work on real-world problems with SciPy, NumPy, Pandas, scikit-image, and other Python libraries. Explore the NumPy array, the data structure that underlies numerical scientific computation Use quantile normalization to ensure that measurements fit a specific distribution Represent separate regions in an image with a Region Adjacency Graph Convert temporal or spatial data into frequency domain data with the Fast Fourier Transform Solve sparse matrix problems, including image segmentations, with SciPy’s sparse module Perform linear algebra by using SciPy packages Explore image alignment (registration) with SciPy’s optimize module Process large datasets with Python data streaming primitives and the Toolz library