Large-scale Kernel Machines

Large-scale Kernel Machines
Author: Léon Bottou
Publisher: MIT Press
Total Pages: 409
Release: 2007
Genre: Computers
ISBN: 0262026252

Download Large-scale Kernel Machines Book in PDF, Epub and Kindle

Solutions for learning from large scale datasets, including kernel learning algorithms that scale linearly with the volume of the data and experiments carried out on realistically large datasets. Pervasive and networked computers have dramatically reduced the cost of collecting and distributing large datasets. In this context, machine learning algorithms that scale poorly could simply become irrelevant. We need learning algorithms that scale linearly with the volume of the data while maintaining enough statistical efficiency to outperform algorithms that simply process a random subset of the data. This volume offers researchers and engineers practical solutions for learning from large scale datasets, with detailed descriptions of algorithms and experiments carried out on realistically large datasets. At the same time it offers researchers information that can address the relative lack of theoretical grounding for many useful algorithms. After a detailed description of state-of-the-art support vector machine technology, an introduction of the essential concepts discussed in the volume, and a comparison of primal and dual optimization techniques, the book progresses from well-understood techniques to more novel and controversial approaches. Many contributors have made their code and data available online for further experimentation. Topics covered include fast implementations of known algorithms, approximations that are amenable to theoretical guarantees, and algorithms that perform well in practice but are difficult to analyze theoretically. Contributors Léon Bottou, Yoshua Bengio, Stéphane Canu, Eric Cosatto, Olivier Chapelle, Ronan Collobert, Dennis DeCoste, Ramani Duraiswami, Igor Durdanovic, Hans-Peter Graf, Arthur Gretton, Patrick Haffner, Stefanie Jegelka, Stephan Kanthak, S. Sathiya Keerthi, Yann LeCun, Chih-Jen Lin, Gaëlle Loosli, Joaquin Quiñonero-Candela, Carl Edward Rasmussen, Gunnar Rätsch, Vikas Chandrakant Raykar, Konrad Rieck, Vikas Sindhwani, Fabian Sinz, Sören Sonnenburg, Jason Weston, Christopher K. I. Williams, Elad Yom-Tov

Large-scale Machine Learning Using Kernel Methods

Large-scale Machine Learning Using Kernel Methods
Author: Gang Wu
Publisher:
Total Pages: 300
Release: 2006
Genre:
ISBN: 9780542681530

Download Large-scale Machine Learning Using Kernel Methods Book in PDF, Epub and Kindle

Through theoretical analysis and extensive empirical studies, we show that our proposed approaches are able to perform more effectively, and efficiently, than traditional methods.

Regularization, Optimization, Kernels, and Support Vector Machines

Regularization, Optimization, Kernels, and Support Vector Machines
Author: Johan A.K. Suykens
Publisher: CRC Press
Total Pages: 528
Release: 2014-10-23
Genre: Computers
ISBN: 1482241390

Download Regularization, Optimization, Kernels, and Support Vector Machines Book in PDF, Epub and Kindle

Regularization, Optimization, Kernels, and Support Vector Machines offers a snapshot of the current state of the art of large-scale machine learning, providing a single multidisciplinary source for the latest research and advances in regularization, sparsity, compressed sensing, convex and large-scale optimization, kernel methods, and support vector machines. Consisting of 21 chapters authored by leading researchers in machine learning, this comprehensive reference: Covers the relationship between support vector machines (SVMs) and the Lasso Discusses multi-layer SVMs Explores nonparametric feature selection, basis pursuit methods, and robust compressive sensing Describes graph-based regularization methods for single- and multi-task learning Considers regularized methods for dictionary learning and portfolio selection Addresses non-negative matrix factorization Examines low-rank matrix and tensor-based models Presents advanced kernel methods for batch and online machine learning, system identification, domain adaptation, and image processing Tackles large-scale algorithms including conditional gradient methods, (non-convex) proximal techniques, and stochastic gradient descent Regularization, Optimization, Kernels, and Support Vector Machines is ideal for researchers in machine learning, pattern recognition, data mining, signal processing, statistical learning, and related areas.

Large Scale Machine Learning with Python

Large Scale Machine Learning with Python
Author: Bastiaan Sjardin
Publisher: Packt Publishing Ltd
Total Pages: 420
Release: 2016-08-03
Genre: Computers
ISBN: 1785888021

Download Large Scale Machine Learning with Python Book in PDF, Epub and Kindle

Learn to build powerful machine learning models quickly and deploy large-scale predictive applications About This Book Design, engineer and deploy scalable machine learning solutions with the power of Python Take command of Hadoop and Spark with Python for effective machine learning on a map reduce framework Build state-of-the-art models and develop personalized recommendations to perform machine learning at scale Who This Book Is For This book is for anyone who intends to work with large and complex data sets. Familiarity with basic Python and machine learning concepts is recommended. Working knowledge in statistics and computational mathematics would also be helpful. What You Will Learn Apply the most scalable machine learning algorithms Work with modern state-of-the-art large-scale machine learning techniques Increase predictive accuracy with deep learning and scalable data-handling techniques Improve your work by combining the MapReduce framework with Spark Build powerful ensembles at scale Use data streams to train linear and non-linear predictive models from extremely large datasets using a single machine In Detail Large Python machine learning projects involve new problems associated with specialized machine learning architectures and designs that many data scientists have yet to tackle. But finding algorithms and designing and building platforms that deal with large sets of data is a growing need. Data scientists have to manage and maintain increasingly complex data projects, and with the rise of big data comes an increasing demand for computational and algorithmic efficiency. Large Scale Machine Learning with Python uncovers a new wave of machine learning algorithms that meet scalability demands together with a high predictive accuracy. Dive into scalable machine learning and the three forms of scalability. Speed up algorithms that can be used on a desktop computer with tips on parallelization and memory allocation. Get to grips with new algorithms that are specifically designed for large projects and can handle bigger files, and learn about machine learning in big data environments. We will also cover the most effective machine learning techniques on a map reduce framework in Hadoop and Spark in Python. Style and Approach This efficient and practical title is stuffed full of the techniques, tips and tools you need to ensure your large scale Python machine learning runs swiftly and seamlessly. Large-scale machine learning tackles a different issue to what is currently on the market. Those working with Hadoop clusters and in data intensive environments can now learn effective ways of building powerful machine learning models from prototype to production. This book is written in a style that programmers from other languages (R, Julia, Java, Matlab) can follow.

Foundations of Large-Scale Multimedia Information Management and Retrieval

Foundations of Large-Scale Multimedia Information Management and Retrieval
Author: Edward Y. Chang
Publisher: Springer Science & Business Media
Total Pages: 300
Release: 2011-08-27
Genre: Computers
ISBN: 3642204295

Download Foundations of Large-Scale Multimedia Information Management and Retrieval Book in PDF, Epub and Kindle

"Foundations of Large-Scale Multimedia Information Management and Retrieval: Mathematics of Perception" covers knowledge representation and semantic analysis of multimedia data and scalability in signal extraction, data mining, and indexing. The book is divided into two parts: Part I - Knowledge Representation and Semantic Analysis focuses on the key components of mathematics of perception as it applies to data management and retrieval. These include feature selection/reduction, knowledge representation, semantic analysis, distance function formulation for measuring similarity, and multimodal fusion. Part II - Scalability Issues presents indexing and distributed methods for scaling up these components for high-dimensional data and Web-scale datasets. The book presents some real-world applications and remarks on future research and development directions. The book is designed for researchers, graduate students, and practitioners in the fields of Computer Vision, Machine Learning, Large-scale Data Mining, Database, and Multimedia Information Retrieval. Dr. Edward Y. Chang was a professor at the Department of Electrical & Computer Engineering, University of California at Santa Barbara, before he joined Google as a research director in 2006. Dr. Chang received his M.S. degree in Computer Science and Ph.D degree in Electrical Engineering, both from Stanford University.

Machine Learning, Optimization, and Data Science

Machine Learning, Optimization, and Data Science
Author: Giuseppe Nicosia
Publisher: Springer
Total Pages: 584
Release: 2019-02-16
Genre: Computers
ISBN: 3030137090

Download Machine Learning, Optimization, and Data Science Book in PDF, Epub and Kindle

This book constitutes the post-conference proceedings of the 4th International Conference on Machine Learning, Optimization, and Data Science, LOD 2018, held in Volterra, Italy, in September 2018.The 46 full papers presented were carefully reviewed and selected from 126 submissions. The papers cover topics in the field of machine learning, artificial intelligence, reinforcement learning, computational optimization and data science presenting a substantial array of ideas, technologies, algorithms, methods and applications.

Kernel Methods

Kernel Methods
Author: Fouad Sabry
Publisher: One Billion Knowledgeable
Total Pages: 109
Release: 2023-06-23
Genre: Computers
ISBN:

Download Kernel Methods Book in PDF, Epub and Kindle

What Is Kernel Methods In the field of machine learning, kernel machines are a class of methods for pattern analysis. The support-vector machine (also known as SVM) is the most well-known member of this group. Pattern analysis frequently makes use of specific kinds of algorithms known as kernel approaches. Utilizing linear classifiers in order to solve nonlinear issues is what these strategies entail. Finding and studying different sorts of general relations present in datasets is the overarching goal of pattern analysis. Kernel methods, on the other hand, require only a user-specified kernel, which can be thought of as a similarity function over all pairs of data points computed using inner products. This is in contrast to many algorithms that solve these tasks, which require the data in their raw representation to be explicitly transformed into feature vector representations via a user-specified feature map. According to the Representer theorem, although the feature map in kernel machines has an unlimited number of dimensions, all that is required as user input is a matrix with a finite number of dimensions. Without parallel processing, computation on kernel machines is painfully slow for data sets with more than a few thousand individual cases. How You Will Benefit (I) Insights, and validations about the following topics: Chapter 1: Kernel method Chapter 2: Support vector machine Chapter 3: Radial basis function Chapter 4: Positive-definite kernel Chapter 5: Sequential minimal optimization Chapter 6: Regularization perspectives on support vector machines Chapter 7: Representer theorem Chapter 8: Radial basis function kernel Chapter 9: Kernel perceptron Chapter 10: Regularized least squares (II) Answering the public top questions about kernel methods. (III) Real world examples for the usage of kernel methods in many fields. (IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of kernel methods' technologies. Who This Book Is For Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of kernel methods.

Computational Science – ICCS 2020

Computational Science – ICCS 2020
Author: Valeria V. Krzhizhanovskaya
Publisher: Springer Nature
Total Pages: 715
Release: 2020-06-18
Genre: Computers
ISBN: 3030504174

Download Computational Science – ICCS 2020 Book in PDF, Epub and Kindle

The seven-volume set LNCS 12137, 12138, 12139, 12140, 12141, 12142, and 12143 constitutes the proceedings of the 20th International Conference on Computational Science, ICCS 2020, held in Amsterdam, The Netherlands, in June 2020.* The total of 101 papers and 248 workshop papers presented in this book set were carefully reviewed and selected from 719 submissions (230 submissions to the main track and 489 submissions to the workshops). The papers were organized in topical sections named: Part I: ICCS Main Track Part II: ICCS Main Track Part III: Advances in High-Performance Computational Earth Sciences: Applications and Frameworks; Agent-Based Simulations, Adaptive Algorithms and Solvers; Applications of Computational Methods in Artificial Intelligence and Machine Learning; Biomedical and Bioinformatics Challenges for Computer Science Part IV: Classifier Learning from Difficult Data; Complex Social Systems through the Lens of Computational Science; Computational Health; Computational Methods for Emerging Problems in (Dis-)Information Analysis Part V: Computational Optimization, Modelling and Simulation; Computational Science in IoT and Smart Systems; Computer Graphics, Image Processing and Artificial Intelligence Part VI: Data Driven Computational Sciences; Machine Learning and Data Assimilation for Dynamical Systems; Meshfree Methods in Computational Sciences; Multiscale Modelling and Simulation; Quantum Computing Workshop Part VII: Simulations of Flow and Transport: Modeling, Algorithms and Computation; Smart Systems: Bringing Together Computer Vision, Sensor Networks and Machine Learning; Software Engineering for Computational Science; Solving Problems with Uncertainties; Teaching Computational Science; UNcErtainty QUantIficatiOn for ComputationAl modeLs *The conference was canceled due to the COVID-19 pandemic.

Kernel Methods for Machine Learning with Math and R

Kernel Methods for Machine Learning with Math and R
Author: Joe Suzuki
Publisher: Springer Nature
Total Pages: 203
Release: 2022-05-04
Genre: Computers
ISBN: 9811903980

Download Kernel Methods for Machine Learning with Math and R Book in PDF, Epub and Kindle

The most crucial ability for machine learning and data science is mathematical logic for grasping their essence rather than relying on knowledge or experience. This textbook addresses the fundamentals of kernel methods for machine learning by considering relevant math problems and building R programs. The book’s main features are as follows: The content is written in an easy-to-follow and self-contained style. The book includes 100 exercises, which have been carefully selected and refined. As their solutions are provided in the main text, readers can solve all of the exercises by reading the book. The mathematical premises of kernels are proven and the correct conclusions are provided, helping readers to understand the nature of kernels. Source programs and running examples are presented to help readers acquire a deeper understanding of the mathematics used. Once readers have a basic understanding of the functional analysis topics covered in Chapter 2, the applications are discussed in the subsequent chapters. Here, no prior knowledge of mathematics is assumed. This book considers both the kernel for reproducing kernel Hilbert space (RKHS) and the kernel for the Gaussian process; a clear distinction is made between the two.