Atmospheric and Oceanic Fluid Dynamics

Atmospheric and Oceanic Fluid Dynamics
Author: Geoffrey K. Vallis
Publisher: Cambridge University Press
Total Pages: 772
Release: 2006-11-06
Genre: Science
ISBN: 1139459961

Download Atmospheric and Oceanic Fluid Dynamics Book in PDF, Epub and Kindle

Fluid dynamics is fundamental to our understanding of the atmosphere and oceans. Although many of the same principles of fluid dynamics apply to both the atmosphere and oceans, textbooks tend to concentrate on the atmosphere, the ocean, or the theory of geophysical fluid dynamics (GFD). This textbook provides a comprehensive unified treatment of atmospheric and oceanic fluid dynamics. The book introduces the fundamentals of geophysical fluid dynamics, including rotation and stratification, vorticity and potential vorticity, and scaling and approximations. It discusses baroclinic and barotropic instabilities, wave-mean flow interactions and turbulence, and the general circulation of the atmosphere and ocean. Student problems and exercises are included at the end of each chapter. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation will be an invaluable graduate textbook on advanced courses in GFD, meteorology, atmospheric science and oceanography, and an excellent review volume for researchers. Additional resources are available at www.cambridge.org/9780521849692.

Introduction to Dual Polarization Weather Radar

Introduction to Dual Polarization Weather Radar
Author: V. Chandrasekar
Publisher: Cambridge University Press
Total Pages: 522
Release: 2023-08-17
Genre: Science
ISBN: 1009234285

Download Introduction to Dual Polarization Weather Radar Book in PDF, Epub and Kindle

An interdisciplinary and easy-to-understand introduction to the subject, covering fundamental theory and practical applications, and using numerous operational examples. This balanced text will allow you to begin from what the radar observes and move deeper through electromagnetic scattering theory and cloud microphysics to understand and interpret data as it appears on the display. It uses illustrations and figures of real radar observations to convey concepts and theory of atmospheric processes typically observed with weather radar, as well presenting a working knowledge of the radar system itself. In addition to covering fundamentals of scattering and atmospheric physics, topics include system hardware, signal processing, and radar networks. This is the perfect tool for scientists and engineers working on weather radars or using radars and their data, as well as senior undergraduate and graduate students studying weather radars.

Meteorology

Meteorology
Author: Steven A. Ackerman
Publisher: Jones & Bartlett Publishers
Total Pages: 605
Release: 2011-04-22
Genre: Science
ISBN: 0763789275

Download Meteorology Book in PDF, Epub and Kindle

Written for the undergraduate, non-majors course, the Third Edition engages students with real-world examples and a captivating narrative. It highlights how we observe the atmosphere and then uses those discoveries to explain atmospheric phenomena. Early chapters discuss the primary atmospheric variables involved in the formation of weather: pressure, temperature, moisture, clouds, and precipitation, and include practical information on weather maps and weather observation. The remainder of the book focuses on weather and climate topics such as the interaction between atmosphere and ocean, severe/extreme weather, and climate change.

Marine Sciences Research

Marine Sciences Research
Author: U.S. Atomic Energy Commission. Division of Biology and Medicine
Publisher:
Total Pages: 46
Release: 1960
Genre: Marine biology
ISBN:

Download Marine Sciences Research Book in PDF, Epub and Kindle

Middle Atmosphere

Middle Atmosphere
Author: PLUMB
Publisher: Birkhäuser
Total Pages: 465
Release: 2013-11-21
Genre: Science
ISBN: 3034858256

Download Middle Atmosphere Book in PDF, Epub and Kindle

PAGEOPH, stratosphere, these differences provide us with new evidence, interpretation of which can materially help to advance our understanding of stratospheric dynamics in general. It is now weil established that smaller-scale motions-in particular gravity waves and turbulence-are of fundamental importance in the general circulation of the mesosphere; they seem to be similarly, if less spectacularly, significant in the troposphere, and probably also in the stratosphere. Our understanding of these motions, their effects on the mean circulation and their mutual interactions is progressing rapidly, as is weil illustrated by the papers in this issue; there are reports of observational studies, especially with new instruments such as the Japanese MV radar, reviews of the state of theory, a laboratory study and an analysis of gravity waves and their effects in the high resolution "SKYHI" general circulation model. There are good reasons to suspect that gravity waves may be of crucial significance in making the stratospheric circulation the way it is (modeling experience being one suggestive piece of evidence for this). Direct observational proof has thus far been prevented by the difficulty of making observations of such scales of motion in this region; in one study reported here, falling sphere observations are used to obtain information on the structure and intensity of waves in the upper stratosphere.