ACS Directory of Graduate Research 1993

ACS Directory of Graduate Research 1993
Author: American Chemical Society. Committee on Professional Training
Publisher:
Total Pages: 1700
Release: 1993
Genre: Science
ISBN: 9780841227231

Download ACS Directory of Graduate Research 1993 Book in PDF, Epub and Kindle

Chalcogenide-Based Nanomaterials as Photocatalysts

Chalcogenide-Based Nanomaterials as Photocatalysts
Author: Mohammad Mansoob Khan
Publisher: Elsevier
Total Pages: 378
Release: 2021-04-07
Genre: Technology & Engineering
ISBN: 0128209178

Download Chalcogenide-Based Nanomaterials as Photocatalysts Book in PDF, Epub and Kindle

Chalcogenide-Based Nanomaterials as Photocatalysts deals with the different types of chalcogenide-based photocatalytic reactions, covering the fundamental concepts of photocatalytic reactions involving chalcogenides for a range of energy and environmental applications. Sections focus on nanostructure control, synthesis methods, activity enhancement strategies, environmental applications, and perspectives of chalcogenide-based nanomaterials. The book offers guidelines for designing new chalcogenide-based nanoscale photocatalysts at low cost and high efficiency for efficient utilization of solar energy in the areas of energy production and environment remediation. Provides information on the development of novel chalcogenide-based nanomaterials Outlines the fundamentals of chalcogenides-based photocatalysis Includes techniques for heterogeneous catalysis based on chalcogenide-based nanomaterials

Chalcogenide

Chalcogenide
Author: Xinyu Liu
Publisher: Woodhead Publishing
Total Pages: 398
Release: 2019-11-14
Genre: Technology & Engineering
ISBN: 0081027362

Download Chalcogenide Book in PDF, Epub and Kindle

Chalcogenide: From 3D to 2D and Beyond reviews graphene-like 2D chalcogenide systems that include topological insulators, interesting thermoelectric structures, and structures that exhibit a host of spin phenomena that are unique to 2D and lower-dimensional geometries. The book describes state-of-the-art materials in growth and fabrication, magnetic, electronic and optical characterization, as well as the experimental and theoretical aspects of this family of materials. Bulk chalcogenides, chalcogenide films, their heterostructures and low-dimensional chalcogenide-based quantum structures are discussed. Particular attention is paid to findings that are relevant to the continued search for new physical phenomena and new functionalities. Finally, the book covers the enormous opportunities that have emerged as it has become possible to achieve lower-dimensional chalcogenide structures by epitaxial techniques. Provides readers with foundational information on the materials growth, fabrication, magnetic, electronic and optical characterization of chalcogenide materials Discusses not only bulk chalcogenides and chalcogenide thin films, but also two-dimensional chalcogenide materials systems Reviews the most important applications in optoelectronics, photovoltaics and thermoelectrics

Frontiers of High Pressure Research II: Application of High Pressure to Low-Dimensional Novel Electronic Materials

Frontiers of High Pressure Research II: Application of High Pressure to Low-Dimensional Novel Electronic Materials
Author: Hans D. Hochheimer
Publisher: Springer Science & Business Media
Total Pages: 556
Release: 2012-12-06
Genre: Science
ISBN: 9401005206

Download Frontiers of High Pressure Research II: Application of High Pressure to Low-Dimensional Novel Electronic Materials Book in PDF, Epub and Kindle

In recent interactions with industrial companies it became quite obvious, that the search for new materials with strong anisotropic properties are of paramount importance for the development of new advanced electronic and magnetic devices. The questions concerning the tailoring of materials with large anisotropic electrical and thermal conductivity were asked over and over again. It became also quite clear that the chance to answer these questions and to find new materials which have these desired properties would demand close collaborations between scientists from different fields. Modem techniques ofcontrolled materials synthesis and advances in measurement and modeling have made clear that multiscale complexity is intrinsic to complex electronic materials, both organic and inorganic. A unified approach to classes of these materials is urgently needed, requiring interdisciplinary input from chemistry, materials science, and solid state physics. Only in this way can they be controlled and exploited for increasingly stringent demands oftechnology. The spatial and temporal complexity is driven by strong, often competing couplings between spin, charge and lattice degrees offreedom, which determine structure-function relationships. The nature of these couplings is a sensitive function of electron-electron, electron-lattice, and spin-lattice interactions; noise and disorder, external fields (magnetic, optical, pressure, etc. ), and dimensionality. In particular, these physical influences control broken-symmetry ground states (charge and spin ordered, ferroelectric, superconducting), metal-insulator transitions, and excitations with respect to broken-symmetries created by chemical- or photo-doping, especially in the form of polaronic or excitonic self-trapping.