Turbulent Flows

Turbulent Flows
Author: Jean Piquet
Publisher: Springer Science & Business Media
Total Pages: 767
Release: 2013-04-17
Genre: Technology & Engineering
ISBN: 3662035596

Download Turbulent Flows Book in PDF, Epub and Kindle

obtained are still severely limited to low Reynolds numbers (about only one decade better than direct numerical simulations), and the interpretation of such calculations for complex, curved geometries is still unclear. It is evident that a lot of work (and a very significant increase in available computing power) is required before such methods can be adopted in daily's engineering practice. I hope to l"Cport on all these topics in a near future. The book is divided into six chapters, each· chapter in subchapters, sections and subsections. The first part is introduced by Chapter 1 which summarizes the equations of fluid mechanies, it is developed in C~apters 2 to 4 devoted to the construction of turbulence models. What has been called "engineering methods" is considered in Chapter 2 where the Reynolds averaged equations al"C established and the closure problem studied (§1-3). A first detailed study of homogeneous turbulent flows follows (§4). It includes a review of available experimental data and their modeling. The eddy viscosity concept is analyzed in §5 with the l"Csulting ~alar-transport equation models such as the famous K-e model. Reynolds stl"Css models (Chapter 4) require a preliminary consideration of two-point turbulence concepts which are developed in Chapter 3 devoted to homogeneous turbulence. We review the two-point moments of velocity fields and their spectral transforms (§ 1), their general dynamics (§2) with the particular case of homogeneous, isotropie turbulence (§3) whel"C the so-called Kolmogorov's assumptions are discussed at length.

Modeling the Dissipation Rate in Rotating Turbulent Flows

Modeling the Dissipation Rate in Rotating Turbulent Flows
Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
Total Pages: 34
Release: 2018-07-05
Genre:
ISBN: 9781722381585

Download Modeling the Dissipation Rate in Rotating Turbulent Flows Book in PDF, Epub and Kindle

A variety of modifications to the modeled dissipation rate transport equation that have been proposed during the past two decades to account for rotational strains are examined. The models are subjected to two crucial test cases: the decay of isotropic turbulence in a rotating frame and homogeneous shear flow in a rotating frame. It is demonstrated that these modifications do not yield substantially improved predictions for these two test cases and in many instances give rise to unphysical behavior. An alternative proposal, based on the use of the tensor dissipation rate, is made for the development of improved models. Speziale, Charles G. and Raj, Rishi and Gatski, Thomas B. Langley Research Center NAS1-18605...

Turbulence Modeling in Non-inertial Frames of Reference

Turbulence Modeling in Non-inertial Frames of Reference
Author: Institute for Computer Applications in Science and Engineering
Publisher:
Total Pages: 56
Release: 1988
Genre:
ISBN:

Download Turbulence Modeling in Non-inertial Frames of Reference Book in PDF, Epub and Kindle

The effect of an arbitrary change of frame on the structure of turbulence models is examined from a fundamental theoretical standpoint. It is proven, as a rigorous consequence of the Navier Stokes equations, that turbulence models must be form invariant under arbitrary translational accelerations of the reference frame and should only be affected by rotations through the intrinsic mean vorticity. A direct application of this invariance property along with the Taylor-Proudman Theorem, material frame indifference in the limit of two dimensional turbulence and Rapid Distortion Theory is shown to yield powerful constraints on the allowable form of turbulence models. Most of the commonly used turbulence models are demonstrated to be in serious violation of these constraints and consequently are inconsistent with the Navier Stokes equations in noninertial frames. Alternative models with improved noninertial properties are developed and some simple applications to rotating turbulent flows are considered. Keywords: Turbulence modeling; Rotating flows; Computational fluid mechanics.

Hydrodynamic and Magnetohydrodynamic Turbulent Flows

Hydrodynamic and Magnetohydrodynamic Turbulent Flows
Author: A. Yoshizawa
Publisher: Springer Science & Business Media
Total Pages: 426
Release: 2013-03-14
Genre: Science
ISBN: 9401718105

Download Hydrodynamic and Magnetohydrodynamic Turbulent Flows Book in PDF, Epub and Kindle

TUrbulence modeling encounters mixed evaluation concerning its impor tance. In engineering flow, the Reynolds number is often very high, and the direct numerical simulation (DNS) based on the resolution of all spatial scales in a flow is beyond the capability of a computer available at present and in the foreseeable near future. The spatial scale of energetic parts of a turbulent flow is much larger than the energy dissipative counterpart, and they have large influence on the transport processes of momentum, heat, matters, etc. The primary subject of turbulence modeling is the proper es timate of these transport processes on the basis of a bold approximation to the energy-dissipation one. In the engineering community, the turbulence modeling is highly evaluated as a mathematical tool indispensable for the analysis of real-world turbulent flow. In the physics community, attention is paid to the study of small-scale components of turbulent flow linked with the energy-dissipation process, and much less interest is shown in the foregoing transport processes in real-world flow. This research tendency is closely related to the general belief that universal properties of turbulence can be found in small-scale phenomena. Such a study has really contributed much to the construction of statistical theoretical approaches to turbulence. The estrangement between the physics community and the turbulence modeling is further enhanced by the fact that the latter is founded on a weak theoretical basis, compared with the study of small-scale turbulence.