Integration of Renewables in Power Systems by Multi-Energy System Interaction

Integration of Renewables in Power Systems by Multi-Energy System Interaction
Author: Birgitte Bak-Jensen
Publisher: MDPI
Total Pages: 358
Release: 2021-04-12
Genre: Technology & Engineering
ISBN: 3036503420

Download Integration of Renewables in Power Systems by Multi-Energy System Interaction Book in PDF, Epub and Kindle

This book focuses on the interaction between different energy vectors, that is, between electrical, thermal, gas, and transportation systems, with the purpose of optimizing the planning and operation of future energy systems. More and more renewable energy is integrated into the electrical system, and to optimize its usage and ensure that its full production can be hosted and utilized, the power system has to be controlled in a more flexible manner. In order not to overload the electrical distribution grids, the new large loads have to be controlled using demand response, perchance through a hierarchical control set-up where some controls are dependent on price signals from the spot and balancing markets. In addition, by performing local real-time control and coordination based on local voltage or system frequency measurements, the grid hosting limits are not violated.

Integration of Renewables in Power Systems by Multi-Energy System Interaction

Integration of Renewables in Power Systems by Multi-Energy System Interaction
Author: Birgitte Bak-Jensen
Publisher:
Total Pages: 358
Release: 2021
Genre:
ISBN: 9783036503431

Download Integration of Renewables in Power Systems by Multi-Energy System Interaction Book in PDF, Epub and Kindle

This book focuses on the interaction between different energy vectors, that is, between electrical, thermal, gas, and transportation systems, with the purpose of optimizing the planning and operation of future energy systems. More and more renewable energy is integrated into the electrical system, and to optimize its usage and ensure that its full production can be hosted and utilized, the power system has to be controlled in a more flexible manner. In order not to overload the electrical distribution grids, the new large loads have to be controlled using demand response, perchance through a hierarchical control set-up where some controls are dependent on price signals from the spot and balancing markets. In addition, by performing local real-time control and coordination based on local voltage or system frequency measurements, the grid hosting limits are not violated.

Integration of Renewable Sources of Energy

Integration of Renewable Sources of Energy
Author: Felix A. Farret
Publisher: John Wiley & Sons
Total Pages: 684
Release: 2017-06-06
Genre: Technology & Engineering
ISBN: 1119137373

Download Integration of Renewable Sources of Energy Book in PDF, Epub and Kindle

The latest tools and techniques for addressing the challenges of 21st century power generation, renewable sources and distribution systems Renewable energy technologies and systems are advancing by leaps and bounds, and it’s only a matter of time before renewables replace fossil fuel and nuclear energy sources. Written for practicing engineers, researchers and students alike, this book discusses state-of-the art mathematical and engineering tools for the modeling, simulation and control of renewable and mixed energy systems and related power electronics. Computational methods for multi-domain modeling of integrated energy systems and the solution of power electronics engineering problems are described in detail. Chapters follow a consistent format, featuring a brief introduction to the theoretical background, a description of problems to be solved, as well as objectives to be achieved. Multiple block diagrams, electrical circuits, and mathematical analysis and/or computer code are provided throughout. And each chapter concludes with discussions of lessons learned, recommendations for further studies, and suggestions for experimental work. Key topics covered in detail include: Integration of the most usual sources of electrical power and related thermal systems Equations for energy systems and power electronics focusing on state-space and power circuit oriented simulations MATLAB® and Simulink® models and functions and their interactions with real-world implementations using microprocessors and microcontrollers Numerical integration techniques, transfer-function modeling, harmonic analysis, and power quality performance assessment MATLAB®/Simulink®, Power Systems Toolbox, and PSIM for the simulation of power electronic circuits, including for renewable energy sources such as wind and solar sources Written by distinguished experts in the field, Integration of Renewable Sources of Energy, 2nd Edition is a valuable working resource for practicing engineers interested in power electronics, power systems, power quality, and alternative or renewable energy. It is also a valuable text/reference for undergraduate and graduate electrical engineering students.

Integration of Green and Renewable Energy in Electric Power Systems

Integration of Green and Renewable Energy in Electric Power Systems
Author: Ali Keyhani
Publisher: John Wiley & Sons
Total Pages: 326
Release: 2009-12-14
Genre: Technology & Engineering
ISBN: 047018776X

Download Integration of Green and Renewable Energy in Electric Power Systems Book in PDF, Epub and Kindle

A practical, application-oriented text that presents analytical results for the better modeling and control of power converters in the integration of green energy in electric power systems The combined technology of power semiconductor switching devices, pulse width modulation algorithms, and control theories are being further developed along with the performance improvement of power semiconductors and microprocessors so that more efficient, reliable, and cheaper electric energy conversion can be achieved within the next decade. Integration of Green and Renewable Energy in Electric Power Systems covers the principles, analysis, and synthesis of closed loop control of pulse width modulated converters in power electronics systems, with special application emphasis on distributed generation systems and uninterruptible power supplies. The authors present two versions of a documented simulation test bed for homework problems and projects based on Matlab/Simulink, designed to help readers understand the content through simulations. The first consists of a number of problems and projects for classroom teaching convenience and learning. The second is based on the most recent work in control of power converters for the research of practicing engineers and industry researchers. Addresses a combination of the latest developments in control technology of pulse width modulation algorithms and digital control methods Problems and projects have detailed mathematical modeling, control design, solution steps, and results Uses a significant number of tables, circuit and block diagrams, and waveform plots with well-designed, class-tested problems/solutions and projects designed for the best teaching-learning interaction Provides computer simulation programs as examples for ease of understanding and platforms for the projects Covering major power-conversion applications that help professionals from a variety of industries, Integration of Green and Renewable Energy in Electric Power Systems provides practical, application-oriented system analysis and synthesis that is instructional and inspiring for practicing electrical engineers and researchers as well as undergraduate and graduate students.

Advances in Energy Systems

Advances in Energy Systems
Author: Peter D. Lund
Publisher: John Wiley & Sons
Total Pages: 576
Release: 2019-04-29
Genre: Science
ISBN: 1119508282

Download Advances in Energy Systems Book in PDF, Epub and Kindle

A guide to a multi-disciplinary approach that includes perspectives from noted experts in the energy and utilities fields Advances in Energy Systems offers a stellar collection of articles selected from the acclaimed journal Wiley Interdisciplinary Review: Energy and Environment. The journalcovers all aspects of energy policy, science and technology, environmental and climate change. The book covers a wide range of relevant issues related to the systemic changes for large-scale integration of renewable energy as part of the on-going energy transition. The book addresses smart energy systems technologies, flexibility measures, recent changes in the marketplace and current policies. With contributions from a list of internationally renowned experts, the book deals with the hot topic of systems integration for future energy systems and energy transition. This important resource: Contains contributions from noted experts in the field Covers a broad range of topics on the topic of renewable energy Explores the technical impacts of high shares of wind and solar power Offers a review of international smart-grid policies Includes information on wireless power transmission Presents an authoritative view of micro-grids Contains a wealth of other relevant topics Written forenergy planners, energy market professionals and technology developers, Advances in Energy Systems is an essential guide with contributions from an international panel of experts that addresses the most recent smart energy technologies.

Renewable Energy Integration

Renewable Energy Integration
Author: Jahangir Hossain
Publisher: Springer Science & Business Media
Total Pages: 447
Release: 2014-01-29
Genre: Technology & Engineering
ISBN: 9814585270

Download Renewable Energy Integration Book in PDF, Epub and Kindle

This book presents different aspects of renewable energy integration, from the latest developments in renewable energy technologies to the currently growing smart grids. The importance of different renewable energy sources is discussed, in order to identify the advantages and challenges for each technology. The rules of connecting the renewable energy sources have also been covered along with practical examples. Since solar and wind energy are the most popular forms of renewable energy sources, this book provides the challenges of integrating these renewable generators along with some innovative solutions. As the complexity of power system operation has been raised due to the renewable energy integration, this book also includes some analysis to investigate the characteristics of power systems in a smarter way. This book is intended for those working in the area of renewable energy integration in distribution networks.

Renewable Energy Integration for Bulk Power Systems

Renewable Energy Integration for Bulk Power Systems
Author: Pengwei Du
Publisher: Springer Nature
Total Pages: 293
Release: 2023-05-12
Genre: Technology & Engineering
ISBN: 3031286391

Download Renewable Energy Integration for Bulk Power Systems Book in PDF, Epub and Kindle

Renewable Energy Integration for Bulk Power Systems: ERCOT and the Texas Interconnection looks at the practices and changes introduced in the Texas electric grid to facilitate renewable energy integration. It offers an informed perspective on solutions that have been successfully demonstrated, tested, and validated by the Electric Reliability Council of Texas (ERCOT) to meet the key challenges which engineers face in integrating increased levels of renewable resources into existing electric grids while maintaining reliability. Coverage includes renewable forecasting, ancillary services, and grid and market operations. Proved methods and their particular use scenarios, including wind, solar, and other resources like batteries and demand response, are also covered. The book focuses on a real-world context that will help practicing engineers, utility providers, and researchers understand the practical considerations for developing renewable integration solutions and inspire the future development of more innovative strategies and theoretical underpinnings.

Emerging Power Converters for Renewable Energy and Electric Vehicles

Emerging Power Converters for Renewable Energy and Electric Vehicles
Author: Md. Rabiul Islam
Publisher: CRC Press
Total Pages: 419
Release: 2021-05-30
Genre: Technology & Engineering
ISBN: 1000374092

Download Emerging Power Converters for Renewable Energy and Electric Vehicles Book in PDF, Epub and Kindle

This book covers advancements of power electronic converters and their control techniques for grid integration of large-scale renewable energy sources and electrical vehicles. Major emphasis is on transformer-less direct grid integration, bidirectional power transfer, compensation of grid power quality issues, DC system protection and grounding, interaction in mixed AC/DC systems, AC and DC system stability, design of high-frequency high power density systems with advanced soft magnetic materials, modeling and simulation of mixed AC/DC systems, switching strategies for enhanced efficiency, and protection and reliability for sustainable grid integration. This book is an invaluable resource for professionals active in the field of renewable energy and power conversion. Md. Rabiul Islam received his PhD from the University of Technology Sydney (UTS), Australia. He was appointed as a Lecturer at Rajshahi University of Engineering & Technology (RUET) in 2005 and promoted to full-term Professor in 2017. In early 2018, he joined the School of Electrical, Computer, and Telecommunications Engineering, University of Wollongong, Australia. He is a Senior Member of IEEE. His research interests include the fields of power electronic converters, renewable energy technologies, power quality, electrical machines, electric vehicles, and smart grids. He has authored or coauthored more than 200 publications including 50 IEEE Transactions/IEEE Journal papers. He has been serving as an editor for IEEE Transactions on Energy Conversion and IEEE Power Engineering Letters, and associate editor for IEEE Access. Md. Rakibuzzaman Shah is a Senior Lecturer with the School of Engineering, Information Technology and Physical Science at Federation University Australia. He has worked and consulted with distribution network operators and transmission system operators on individual projects and has done collaborative work on a large number of projects (EPSRC project on multi-terminal HVDC, Scottish and Southern Energy multi-infeed HVDC) - primarily on the dynamic impact of integrating new technologies and power electronics into large systems. He is an active member of the IEEE and CIGRE. He has more than 70 international publications and has spoken at the leading power system conferences around the world. His research interests include future power grids (i.e., renewable energy integration, wide-area control), asynchronous grid connection through VSC-HVDC, application of data mining in power system, distribution system energy management, and low carbon energy systems. Mohd. Hasan Ali is currently an Associate Professor with the Electrical and Computer Engineering Department at the University of Memphis, USA, where he leads the Electric Power and Energy Systems (EPES) Laboratory. His research interests include advanced power systems, smart-grid and microgrid systems, renewable energy systems, and cybersecurity issues in modern power grids. Dr. Ali has more than 190 publications, including 2 books, 4 book chapters, 2 patents, 60 top ranked journal papers, 96 peer-reviewed international conference papers, and 20 national conference papers. He serves as the editor of the IEEE Transactions on Sustainable Energy and IET-Generation, Transmission and Distribution (GTD) journal. Dr. Ali is a Senior Member of the IEEE Power and Energy Society (PES). He is also the Chair of the PES of the IEEE Memphis Section.

Modeling Power Electronics and Interfacing Energy Conversion Systems

Modeling Power Electronics and Interfacing Energy Conversion Systems
Author: M. Godoy Simoes
Publisher: John Wiley & Sons
Total Pages: 440
Release: 2016-09-16
Genre: Technology & Engineering
ISBN: 1119058473

Download Modeling Power Electronics and Interfacing Energy Conversion Systems Book in PDF, Epub and Kindle

Discusses the application of mathematical and engineering tools for modeling, simulation and control oriented for energy systems, power electronics and renewable energy This book builds on the background knowledge of electrical circuits, control of dc/dc converters and inverters, energy conversion and power electronics. The book shows readers how to apply computational methods for multi-domain simulation of energy systems and power electronics engineering problems. Each chapter has a brief introduction on the theoretical background, a description of the problems to be solved, and objectives to be achieved. Block diagrams, electrical circuits, mathematical analysis or computer code are covered. Each chapter concludes with discussions on what should be learned, suggestions for further studies and even some experimental work. Discusses the mathematical formulation of system equations for energy systems and power electronics aiming state-space and circuit oriented simulations Studies the interactions between MATLAB and Simulink models and functions with real-world implementation using microprocessors and microcontrollers Presents numerical integration techniques, transfer-function modeling, harmonic analysis and power quality performance assessment Examines existing software such as, MATLAB/Simulink, Power Systems Toolbox and PSIM to simulate power electronic circuits including the use of renewable energy sources such as wind and solar sources The simulation files are available for readers who register with the Google Group: power-electronics-interfacing-energy-conversion-systems@googlegroups.com. After your registration you will receive information in how to access the simulation files, the Google Group can also be used to communicate with other registered readers of this book.

Renewable Energy in Power Systems

Renewable Energy in Power Systems
Author: David Infield
Publisher: John Wiley & Sons
Total Pages: 352
Release: 2019-12-02
Genre: Technology & Engineering
ISBN: 1118788583

Download Renewable Energy in Power Systems Book in PDF, Epub and Kindle

An up to date account of renewable sources of electricity generation and their integration into power systems With the growth in installed capacity of renewable energy (RE) generation, many countries such as the UK are relying on higher levels of RE generation to meet targets for reduced greenhouse gas emissions. In the face of this, the integration issue is now of increasing concern, in particular to system operators. This updated text describes the individual renewable technologies and their power generation characteristics alongside an expanded introduction to power systems and the challenges posed by high levels of penetrations from such technologies, together with an account of technologies and changes to system operation that can ease RE integration. Features of this edition: Covers power conditioning, the characteristics of RE generators, with emphasis on their time varying nature, and the use of power electronics in interfacing RE sources to grids Outlines up to date RE integration issues such as power flow in networks supplied from a combination of conventional and renewable energy sources Updated coverage of the economics of power generation and the role of markets in delivering investment in sustainable solutions Considers the challenge of maintaining power balance in a system with increasing RE input, including recent moves toward power system frequency support from RE sources Offers an insightful perspective on the shape of future power systems including offshore networks and demand side management Includes worked examples that enhance this edition’s suitability as a textbook for introductory courses in RE systems technology Firmly established as an essential reference, the Second Edition of Renewable Energy in Power Systems will prove a real asset to engineers and others involved in both the traditional power and fast growing renewables sector. This text should also be of particular benefit to students of electrical power engineering and will additionally appeal to non-specialists through the inclusion of background material covering the basics of electricity generation.