Numerical Simulation of Compressible Flow Using a Velocity/vorticity/pressure Formulation

Numerical Simulation of Compressible Flow Using a Velocity/vorticity/pressure Formulation
Author: Ben Chacon
Publisher:
Total Pages:
Release: 2013
Genre:
ISBN: 9781303791697

Download Numerical Simulation of Compressible Flow Using a Velocity/vorticity/pressure Formulation Book in PDF, Epub and Kindle

The fundamental equations for compressible flow are solved using a velocity - pressure - vorticity formulation producing a solution that satisfies continuity and vorticity definitions up to machine accuracy. Chapter 1 reviews many algorithms used to solve this problem. Unlike those methods, no pressure - velocity relation or artificial compressibility is assumed in the present formulation, so the equations for kinematics, pressure and momentum are decoupled independent building blocks in the iterative process. As a consequence, the resulting modular algorithm can be used directly for compressible or incompressible flows, contrasting with other current techniques. Moreover the present formulation also applies to two-dimensional and three-dimensional, structured and unstructured grids without any changes, even though only the two-dimensional version was implemented. In Chapter 2, the original formulation is described. A functional minimization technique is used to discretize the kinematics equations, mimicking continuous methods used in the field of functional analysis and providing a common framework to understand, model and implement the solution algorithm. Suitable preconditioning and radial interpolation techniques are employed to balance precision and computational speed. The Poisson equation for pressure is solved similarly by minimizing a suitable functional. The momentum equations are then solved using a finite volume approach adding a controlled amount of artificial viscosity according to mesh size and Reynolds number, resulting in a stable calculation. The vorticity is then obtained as the curl of the velocity. Temperature is similarly computed from the energy equation in an outer loop. Suitable adjustments to pressure and temperature enable the ideal gas equation to fit both the compressible and incompressible paradigmsSubsequent chapters deal with validation, applying the computer efficient implementation of the algorithm to a variety of well documented aerodynamic benchmark problems. Examples include compressible and incompressible flow, steady and unsteady problems and flow over cylinders and airfoils over a variety of Reynolds and subsonic Mach numbers.

Numerical Simulations Of Incompressible Flows

Numerical Simulations Of Incompressible Flows
Author: Mohamed M Hafez
Publisher: World Scientific
Total Pages: 708
Release: 2003-01-23
Genre: Mathematics
ISBN: 9814486396

Download Numerical Simulations Of Incompressible Flows Book in PDF, Epub and Kindle

This book consists of 37 articles dealing with simulation of incompressible flows and applications in many areas. It covers numerical methods and algorithm developments as well as applications in aeronautics and other areas. It represents the state of the art in the field.

Practical Methods for Simulation of Compressible Flow and Structure Interactions

Practical Methods for Simulation of Compressible Flow and Structure Interactions
Author: Nipun Kwatra
Publisher: Stanford University
Total Pages: 117
Release: 2011
Genre:
ISBN:

Download Practical Methods for Simulation of Compressible Flow and Structure Interactions Book in PDF, Epub and Kindle

This thesis presents a semi-implicit method for simulating inviscid compressible flow and its extensions for strong implicit coupling of compressible flow with Lagrangian solids, and artificial transition of fluid from compressible flow to incompressible flow regime for graphics applications. First we present a novel semi-implicit method for alleviating the stringent CFL condition imposed by the sound speed in simulating inviscid compressible flow with shocks, contacts and rarefactions. The method splits the compressible flow flux into two parts -- an advection part and an acoustic part. The advection part is solved using an explicit scheme, while the acoustic part is solved using an implicit method allowing us to avoid the sound speed imposed CFL restriction. Our method leads to a standard Poisson equation similar to what one would solve for incompressible flow, but has an identity term more similar to a diffusion equation. In the limit as the sound speed goes to infinity, one obtains the Poisson equation for incompressible flow. This implicit pressure solve also lends itself nicely to solve for the pressure and coupling forces at a solid fluid interface. With this pressure solve as the foundation, we then develop a novel method to implicitly two-way couple Eulerian compressible flow to volumetric Lagrangian solids. The method works for both deformable and rigid solids and for arbitrary equations of state. Similar to previous fluid-structure interaction methods, we apply pressure forces to the solid and enforce a velocity boundary condition on the fluid in order to satisfy a no-slip constraint. Unlike previous methods, however, we apply these coupled interactions implicitly by adding the constraint to the pressure system and combining it with any implicit solid forces in order to obtain a strongly coupled system. Because our method handles the fluid-structure interactions implicitly, we avoid introducing any new time step restrictions and obtain stable results even for high density-to-mass ratios, where explicit methods struggle or fail. We exactly conserve momentum and kinetic energy (thermal fluid-structure interactions are not considered) at the fluid-structure interface, and hence naturally handle highly non-linear phenomenon such as shocks, contacts and rarefactions. The implicit pressure solve allows our method to be used for any sound speed efficiently. In particular as the sound speed goes to infinity, we obtain the standard Poisson equation for incompressible flow. This allows our method to work seamlessly and efficiently as the sound speed in the underlying flow field changes. Building on this feature of our method, we next develop a practical approach to integrating shock wave dynamics into traditional smoke simulations. Previous methods for doing this either simplified away the compressible component of the flow and were unable to capture shock fronts or used a prohibitively expensive explicit method that limits the time step of the simulation long after the relevant shock waves and rarefactions have left the domain. Instead, using our semi-implicit formulation allows us to take time steps on the order of fluid velocity. As we handle the acoustic fluid effects implicitly, we can artificially drive the sound speed c of the fluid to infinity without going unstable or driving the time step to zero. This permits the fluid to transition from compressible flow to the far more tractable incompressible flow regime once the interesting compressible flow phenomena (such as shocks) have left the domain of interest, and allows the use of state-of-the-art smoke simulation techniques.

Numerical Simulation of 3-D Incompressible Unsteady Viscous Laminar Flows

Numerical Simulation of 3-D Incompressible Unsteady Viscous Laminar Flows
Author: Michel Deville
Publisher: Vieweg+Teubner Verlag
Total Pages: 234
Release: 2013-03-09
Genre: Technology & Engineering
ISBN: 3663002217

Download Numerical Simulation of 3-D Incompressible Unsteady Viscous Laminar Flows Book in PDF, Epub and Kindle

The GAMM-Commi ttee for Numerical Methods in Fluid Mechanics (GAMM-Fachausschuss für Numerische Methoden in der Strömungsmechanik) has sponsored the organization of a GAMM Workshop dedicated to the numerical simulation of three dimensional incompressible unsteady viscous laminar flows to test Navier-Stokes solvers. The Workshop was held in Paris from June 12th to June 14th, 1991 at the Ecole Nationale Superieure des Arts et Metiers. Two test problems were set up. The first one is the flow in a driven-lid parallelepipedic cavity at Re = 3200 . The second problem is a flow around a prolate spheroid at incidence. These problems are challenging as fully transient solutions are expected to show up. The difficulties for meaningful calculations come from both space and temporal discretizations which have to be sufficiently accurate to resol ve detailed structures like Taylor-Görtler-like vortices and the appropriate time development. Several research teams from academia and industry tackled the tests using different formulations (veloci ty-pressure, vortici ty velocity), different numerical methods (finite differences, finite volumes, finite elements), various solution algorithms (splitting, coupled ...), various solvers (direct, iterative, semi-iterative) with preconditioners or other numerical speed-up procedures. The results show some scatter and achieve different levels of efficiency. The Workshop was attended by about 25 scientists and drove much interaction between the participants. The contributions in these proceedings are presented in alphabetical order according to the first author, first for the cavi ty problem and then for the prolate spheroid problem. No definite conclusions about benchmark solutions can be drawn.

Computational Fluid Dynamics

Computational Fluid Dynamics
Author: Takeo Kajishima
Publisher: Springer
Total Pages: 364
Release: 2016-10-01
Genre: Technology & Engineering
ISBN: 3319453041

Download Computational Fluid Dynamics Book in PDF, Epub and Kindle

This textbook presents numerical solution techniques for incompressible turbulent flows that occur in a variety of scientific and engineering settings including aerodynamics of ground-based vehicles and low-speed aircraft, fluid flows in energy systems, atmospheric flows, and biological flows. This book encompasses fluid mechanics, partial differential equations, numerical methods, and turbulence models, and emphasizes the foundation on how the governing partial differential equations for incompressible fluid flow can be solved numerically in an accurate and efficient manner. Extensive discussions on incompressible flow solvers and turbulence modeling are also offered. This text is an ideal instructional resource and reference for students, research scientists, and professional engineers interested in analyzing fluid flows using numerical simulations for fundamental research and industrial applications.

Incompressible Flow

Incompressible Flow
Author: Ronald L. Panton
Publisher: John Wiley & Sons
Total Pages: 912
Release: 2013-08-05
Genre: Science
ISBN: 1118013433

Download Incompressible Flow Book in PDF, Epub and Kindle

The most teachable book on incompressible flow— now fully revised, updated, and expanded Incompressible Flow, Fourth Edition is the updated and revised edition of Ronald Panton's classic text. It continues a respected tradition of providing the most comprehensive coverage of the subject in an exceptionally clear, unified, and carefully paced introduction to advanced concepts in fluid mechanics. Beginning with basic principles, this Fourth Edition patiently develops the math and physics leading to major theories. Throughout, the book provides a unified presentation of physics, mathematics, and engineering applications, liberally supplemented with helpful exercises and example problems. Revised to reflect students' ready access to mathematical computer programs that have advanced features and are easy to use, Incompressible Flow, Fourth Edition includes: Several more exact solutions of the Navier-Stokes equations Classic-style Fortran programs for the Hiemenz flow, the Psi-Omega method for entrance flow, and the laminar boundary layer program, all revised into MATLAB A new discussion of the global vorticity boundary restriction A revised vorticity dynamics chapter with new examples, including the ring line vortex and the Fraenkel-Norbury vortex solutions A discussion of the different behaviors that occur in subsonic and supersonic steady flows Additional emphasis on composite asymptotic expansions Incompressible Flow, Fourth Edition is the ideal coursebook for classes in fluid dynamics offered in mechanical, aerospace, and chemical engineering programs.

Practical Methods for Simulation of Compressible Flow and Structure Interactions

Practical Methods for Simulation of Compressible Flow and Structure Interactions
Author: Nipun Kwatra
Publisher:
Total Pages:
Release: 2011
Genre:
ISBN:

Download Practical Methods for Simulation of Compressible Flow and Structure Interactions Book in PDF, Epub and Kindle

This thesis presents a semi-implicit method for simulating inviscid compressible flow and its extensions for strong implicit coupling of compressible flow with Lagrangian solids, and artificial transition of fluid from compressible flow to incompressible flow regime for graphics applications. First we present a novel semi-implicit method for alleviating the stringent CFL condition imposed by the sound speed in simulating inviscid compressible flow with shocks, contacts and rarefactions. The method splits the compressible flow flux into two parts -- an advection part and an acoustic part. The advection part is solved using an explicit scheme, while the acoustic part is solved using an implicit method allowing us to avoid the sound speed imposed CFL restriction. Our method leads to a standard Poisson equation similar to what one would solve for incompressible flow, but has an identity term more similar to a diffusion equation. In the limit as the sound speed goes to infinity, one obtains the Poisson equation for incompressible flow. This implicit pressure solve also lends itself nicely to solve for the pressure and coupling forces at a solid fluid interface. With this pressure solve as the foundation, we then develop a novel method to implicitly two-way couple Eulerian compressible flow to volumetric Lagrangian solids. The method works for both deformable and rigid solids and for arbitrary equations of state. Similar to previous fluid-structure interaction methods, we apply pressure forces to the solid and enforce a velocity boundary condition on the fluid in order to satisfy a no-slip constraint. Unlike previous methods, however, we apply these coupled interactions implicitly by adding the constraint to the pressure system and combining it with any implicit solid forces in order to obtain a strongly coupled system. Because our method handles the fluid-structure interactions implicitly, we avoid introducing any new time step restrictions and obtain stable results even for high density-to-mass ratios, where explicit methods struggle or fail. We exactly conserve momentum and kinetic energy (thermal fluid-structure interactions are not considered) at the fluid-structure interface, and hence naturally handle highly non-linear phenomenon such as shocks, contacts and rarefactions. The implicit pressure solve allows our method to be used for any sound speed efficiently. In particular as the sound speed goes to infinity, we obtain the standard Poisson equation for incompressible flow. This allows our method to work seamlessly and efficiently as the sound speed in the underlying flow field changes. Building on this feature of our method, we next develop a practical approach to integrating shock wave dynamics into traditional smoke simulations. Previous methods for doing this either simplified away the compressible component of the flow and were unable to capture shock fronts or used a prohibitively expensive explicit method that limits the time step of the simulation long after the relevant shock waves and rarefactions have left the domain. Instead, using our semi-implicit formulation allows us to take time steps on the order of fluid velocity. As we handle the acoustic fluid effects implicitly, we can artificially drive the sound speed c of the fluid to infinity without going unstable or driving the time step to zero. This permits the fluid to transition from compressible flow to the far more tractable incompressible flow regime once the interesting compressible flow phenomena (such as shocks) have left the domain of interest, and allows the use of state-of-the-art smoke simulation techniques.