In-situ Solar Cell Studies of Perovskite Formation and Degradation

In-situ Solar Cell Studies of Perovskite Formation and Degradation
Author: Wei-Chun Lin
Publisher:
Total Pages: 123
Release: 2017
Genre: Perovskite
ISBN:

Download In-situ Solar Cell Studies of Perovskite Formation and Degradation Book in PDF, Epub and Kindle

Since CH3NH3PbI3 based perovskites were discovered as viable active materials for the next generation photovoltaic devices, their instability in different environmental conditions has been a constant challenge. In pursuit of a better understanding of the degradation mechanisms, perovskite solar cells have been fabricated and investigated by scientists in order to find correlations between the solar cell characteristics/performance and the interface variation. In this thesis, the perovskite reactivity to humidity is studied by exposing samples to D2O environment for different durations. The degradation process of CH3NH3PbI3 perovskite is examined in-situ by using time-of-flight secondary ion mass spectrometry (ToF-SIMS). 3D images are constructed through the layer-by-layer spatially resolved elemental distribution analysis and the D2O moisture penetration through the sample. The intermediate products of interaction with moisture are analyzed by ToF-SIMS and X-ray photoelectron spectroscopy (XPS).We also investigated the electrical operation-induced degradation on CH3NH3PbI3 perovskite solar cells. Upon exposure to electrical current, the structure and composition were examined by combining depth-resolved imaging with ToF-SIMS, XPS and field-emission scanning electron microscopy (FE-SEM). The results show that the interface of the perovskite and the meso-porous TiO2 intermix into each other during the initial operations of solar cell. This intermixing turns the efficiency upward and improves the power conversion efficiency (PCE) up to ~50%. Both depth profiles and SEM images proved that operating devices undergo irreversible changes in thickness, which results in a dramatic performance loss eventually. In addition to studying the degradation process of the perovskite, a new formation method was developed to achieve complete conversion of PbI2 to CH3NH3I3 on FTO/Compact TiO2 substrate by employing a quaternary ammonium salt as an additive in the PbI2 solution. This complete conversion improves perovskite solar cell efficiency up to ~45 % compared to devices made without additive (from 11% to 16% in PCE).

Perovskite Solar Cells

Perovskite Solar Cells
Author: Shahzada Ahmad
Publisher: John Wiley & Sons
Total Pages: 580
Release: 2022-03-14
Genre: Technology & Engineering
ISBN: 3527347151

Download Perovskite Solar Cells Book in PDF, Epub and Kindle

Presents a thorough overview of perovskite research, written by leaders in the field of photovoltaics The use of perovskite-structured materials to produce high-efficiency solar cells is a subject of growing interest for academic researchers and industry professionals alike. Due to their excellent light absorption, longevity, and charge-carrier properties, perovskite solar cells show great promise as a low-cost, industry-scalable alternative to conventional photovoltaic cells. Perovskite Solar Cells: Materials, Processes, and Devices provides an up-to-date overview of the current state of perovskite solar cell research. Addressing the key areas in the rapidly growing field, this comprehensive volume covers novel materials, advanced theory, modelling and simulation, device physics, new processes, and the critical issue of solar cell stability. Contributions by an international panel of researchers highlight both the opportunities and challenges related to perovskite solar cells while offering detailed insights on topics such as the photon recycling processes, interfacial properties, and charge transfer principles of perovskite-based devices. Examines new compositions, hole and electron transport materials, lead-free materials, and 2D and 3D materials Covers interface modelling techniques, methods for modelling in two and three dimensions, and developments beyond Shockley-Queisser Theory Discusses new fabrication processes such as slot-die coating, roll processing, and vacuum sublimation Describes the device physics of perovskite solar cells, including recombination kinetics and optical absorption Explores innovative approaches to increase the light conversion efficiency of photovoltaic cells Perovskite Solar Cells: Materials, Processes, and Devices is essential reading for all those in the photovoltaic community, including materials scientists, surface physicists, surface chemists, solid state physicists, solid state chemists, and electrical engineers.

Organic-Inorganic Halide Perovskite Photovoltaics

Organic-Inorganic Halide Perovskite Photovoltaics
Author: Nam-Gyu Park
Publisher: Springer
Total Pages: 366
Release: 2016-07-25
Genre: Technology & Engineering
ISBN: 3319351141

Download Organic-Inorganic Halide Perovskite Photovoltaics Book in PDF, Epub and Kindle

This book covers fundamentals of organometal perovskite materials and their photovoltaics, including materials preparation and device fabrications. Special emphasis is given to halide perovskites. The opto-electronic properties of perovskite materials and recent progress in perovskite solar cells are described. In addition, comments on the issues to current and future challenges are mentioned.

Characterization Techniques for Perovskite Solar Cell Materials

Characterization Techniques for Perovskite Solar Cell Materials
Author: Meysam Pazoki
Publisher: Elsevier
Total Pages: 278
Release: 2019-11-14
Genre: Technology & Engineering
ISBN: 0128147288

Download Characterization Techniques for Perovskite Solar Cell Materials Book in PDF, Epub and Kindle

Characterization Techniques for Perovskite Solar Cell Materials: Characterization of Recently Emerged Perovskite Solar Cell Materials to Provide an Understanding of the Fundamental Physics on the Nano Scale and Optimize the Operation of the Device Towards Stable and Low-Cost Photovoltaic Technology explores the characterization of nanocrystals of the perovskite film, related interfaces, and the overall impacts of these properties on device efficiency. Included is a collection of both main and research techniques for perovskite solar cells. For the first time, readers will have a complete reference of different characterization techniques, all housed in a work written by highly experienced experts. Explores various characterization techniques for perovskite solar cells and discusses both their strengths and weaknesses Discusses material synthesis and device fabrication of perovskite solar cells Includes a comparison throughout the work on how to distinguish one perovskite solar cell from another

Perovskite Photovoltaics

Perovskite Photovoltaics
Author: Aparna Thankappan
Publisher: Academic Press
Total Pages: 521
Release: 2018-06-29
Genre: Technology & Engineering
ISBN: 0128129166

Download Perovskite Photovoltaics Book in PDF, Epub and Kindle

Perovskite Photovoltaics: Basic to Advanced Concepts and Implementation examines the emergence of perovskite photovoltaics, associated challenges and opportunities, and how to achieve broader development. Consolidating developments in perovskite photovoltaics, including recent progress solar cells, this text also highlights advances and the research necessary for sustaining energy. Addressing different photovoltaics fields with tailored content for what makes perovskite solar cells suitable, and including commercialization examples of large-scale perovskite solar technology. The book also contains a detailed analysis of the implementation and economic viability of perovskite solar cells, highlighting what photovoltaic devices need to be generated by low cost, non-toxic, earth abundant materials using environmentally scalable processes. This book is a valuable resource engineers, scientists and researchers, and all those who wish to broaden their knowledge on flexible perovskite solar cells. Includes contributions by leading solar cell academics, industrialists, researchers and institutions across the globe Addresses different photovoltaics fields with tailored content for what makes perovskite solar cells different Provides commercialization examples of large-scale perovskite solar technology, giving users detailed analysis on the implementation, technical challenges and economic viability of perovskite solar cells

Perovskite-Based Solar Cells

Perovskite-Based Solar Cells
Author: Saida Laalioui
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 93
Release: 2022-02-21
Genre: Science
ISBN: 3110760614

Download Perovskite-Based Solar Cells Book in PDF, Epub and Kindle

"Perovskite-Based Solar Cells: From Fundamentals to Tandem Devices" gives fundamental understanding of perovskite solar cells from the chemical composition of each thin layer composing the different stacks to the whole device. Special attention has been given to the development of the materials forming the perovskite solar cell and their effect on the device performance, in addition to the recent progress of this emerging technology. Moreover, light has been shed on the perovskite elaboration techniques, in addition to the several techniques proposed to improve both the efficiency and the stability of perovskite solar cells. Furthermore, special emphasis was given to the three types of tandem solar cells and their recent advances starting from Perovskite/perovskite tandem solar cells to Perovskite/ CIGS tandem cells to perovskite/ heterojunction silicon tandem solar cells. The latter constitute a promising solution to improve photovoltaic solar cells performance.

Lead Halide Perovskite Solar Cells

Lead Halide Perovskite Solar Cells
Author: David J. Fisher
Publisher: Materials Research Forum LLC
Total Pages: 130
Release: 2020-06-05
Genre: Technology & Engineering
ISBN: 1644900815

Download Lead Halide Perovskite Solar Cells Book in PDF, Epub and Kindle

Lead halide perovskite materials have a huge potential in solar cell technology. They offer the combined advantages of low-cost preparation and high power-conversion efficiency. The present review focusses on the following topics: Power Conversion Efficiency; Electron Transport, Hole Transport and Interface Layers; Material Preparation; Cesium-Doped Lead-Halide Perovskites; Formamidinium-Doped Lead-Halide Perovskites; Methylammonium Lead-Halide Perovskites; Hysteresis, Stability and Toxicity Problems. The book references 334 original resources and includes their direct web link for in-depth reading. Keywords: Solar Cells, Lead Halide Perovskite Materials, Cesium-Doped Lead-Halide Perovskites, Formamidinium-Doped Lead-Halide Perovskites, Methylammonium Lead-Halide Perovskites, Electron-Transport Layer, Hole-Transport Layer, Interface Layers, Hysteresis Problem, Stability Problem, Toxicity Problem.

Perovskite Solar Cells

Perovskite Solar Cells
Author: Kunwu Fu
Publisher: CRC Press
Total Pages: 350
Release: 2019-03-19
Genre: Science
ISBN: 0429891679

Download Perovskite Solar Cells Book in PDF, Epub and Kindle

The increasing use of metal halide perovskites as light harvesters has stunned the photovoltaic community. The book, Perovskite Solar Cells: Technology and Practices, covers the basics and provides up-to-date research in the field of perovskite photovoltaics—a fast trending branch of the thin film photovoltaic generation. This comprehensive handbook provides a broad and overall picture of perovskite solar cells (PSCs), starting with the history of development and revolution of PSCs. The authors then delve into electron-transporting materials, hole-transporting materials, and lead-free alternatives. An important chapter on tandem solar cells is also included. The chapters discuss how different layers in PSCs are fabricated and function and how their roles are as important as the perovskite layer itself. It explores what has been done and what can probably be done to further improve the performance of this device.

Atomic and Nano Scale Materials for Advanced Energy Conversion, 2 Volumes

Atomic and Nano Scale Materials for Advanced Energy Conversion, 2 Volumes
Author: Zongyou Yin
Publisher: John Wiley & Sons
Total Pages: 887
Release: 2022-04-18
Genre: Technology & Engineering
ISBN: 3527348921

Download Atomic and Nano Scale Materials for Advanced Energy Conversion, 2 Volumes Book in PDF, Epub and Kindle

Atomic and Nano Scale Materials for Advanced Energy Conversion Discover the latest advancements in energy conversion technologies used to develop modern sustainable energy techniques In Atomic and Nano Scale Materials for Advanced Energy Conversion, expert interdisciplinary researcher Dr. Zongyou Yin delivers a comprehensive overview of nano-to-atomic scale materials science, the development of advanced electrochemical, photochemical, photoelectrochemical, and photovoltaic energy conversion strategies, and the applications for sustainable water splitting and other technologies. The book offers readers cutting-edge information of two-dimensional nano, mixed-dimensional nano, nano rare earth, clusters, and single atoms. It constructively evaluates emerging nano-to-atomic scale energy conversion technologies for academic research and development (R&D) researchers and industrial technique consultants and engineers. The author sets out a systematic analysis of recent energy-conversion science, covering topics like adaptable manufacturing of Van der Waals heterojunctions, mixed-dimensional junctions, tandem structures, and superlattices. He also discusses function-oriented engineering in polymorphic phases, photon absorption, excitons-charges conversion, non-noble plasmonics, and solid-liquid-gas interactions. Readers will also benefit from: A thorough introduction to emerging nanomaterials for energy conversion, including electrochemical, photochemical, photoelectrochemical, and photovoltaic energy conversion An exploration of clusters for energy conversion, including electrochemical, photochemical, and photoelectrochemical clusters Practical discussions of single atoms for energy conversion in electrochemical, photochemical, and photoelectrochemical energy conversion technologies A thorough analysis of future perspectives and directions in advanced energy conversion technology Perfect for materials scientists, photochemists, electrochemists, and inorganic chemists, Atomic and Nano Scale Materials for Advanced Energy Conversion is also a must-read resource for catalytic chemists interested in the intersection of advanced chemistry and physics in energy conversion technologies.

High-resolution Analysis of Perovskite Absorbers in Photovoltaics

High-resolution Analysis of Perovskite Absorbers in Photovoltaics
Author: Laura Elena Mundt
Publisher:
Total Pages:
Release: 2018
Genre:
ISBN:

Download High-resolution Analysis of Perovskite Absorbers in Photovoltaics Book in PDF, Epub and Kindle

Abstract: This thesis discusses studies performed by the author at the Fraunhofer Institute for Solar Energy Systems, ISE. The presented work focuses on the characterization of hybrid organic-inorganic halide perovskite materials used for photovoltaic application. In an in situ study of the perovskite crystal formation, multiple stages are identified. Taking advantage of a graphite-based cell structure where both contacts are in place before the perovskite crystal formation occurs within the mesoporous scaffold, the photovoltaic performance along with optoelectronic properties are monitored in real time during the crystallization. As perovskite solar cells are prone to spatial heterogeneity, spatially resolved characterization techniques mainly based on photoluminescence spectroscopy, light beam-induced current and thermography are employed to analyze non-uniform optoelectronic properties and quantify local loss mechanisms. A novel characterization method is introduced by the author, allowing for the quantitative assessment of local loss mechanisms. The technique is demonstrated on blade coated perovskite solar cells, which represent a scalable deposition route, and it highlights the detrimental impact of layer non-uniformity on the overall solar cell performance. It presents a powerful tool for the targeted improvement of layer homogeneity and consequential benefit the enhancement of the cell efficiency. In high bandgap perovskite films made from a mixed cation and halide alloy, the local optoelectronic properties are analyzed with micrometer resolution. Non-uniform emission properties are revealed and related to the layer morphology. A subcell-selective analysis of monolithic two-terminal silicon perovskite tandem solar cells is presented, accessing the individual subcells by multi-wavelength photoluminescence spectroscopy. The mapping approach additionally yields spatial distribution of the photoluminescence emission, allowing for the identification of process influences on the two subcells. The results from this thesis generated insights about the perovskite crystal formation and spatial heterogeneities on different length scales. Overall, the findings support the targeted optimization of hybrid organic-inorganic halide perovskite solar cells.