Implementation of Framework for Joint Optimization of Connected/Autonomous Vehicles Trajectories and Signal Phase and Time in Simulated and Real-World Environments

Implementation of Framework for Joint Optimization of Connected/Autonomous Vehicles Trajectories and Signal Phase and Time in Simulated and Real-World Environments
Author: Luan Guilherme Staichak Carvalho
Publisher:
Total Pages: 0
Release: 2023
Genre:
ISBN:

Download Implementation of Framework for Joint Optimization of Connected/Autonomous Vehicles Trajectories and Signal Phase and Time in Simulated and Real-World Environments Book in PDF, Epub and Kindle

the hardware and software used in the deployment, which are mainly related to sensor inaccuracies, communication failures, and hardware specifications. This knowledge will allow further development of optimization algorithms to account for the limitations present on the field, and also to develop traffic simulation frameworks more closely related to reality. The third step of this work is to integrate the optimization algorithm with traffic micro-simulator VISSIM. The use of a robust, well-known micro-simulator in both industry and academic applications provides a more reliable assessment of the performance of the optimization algorithm, and establishes a common framework where other novel optimization algorithms can be compared. An initial case study is conducted using only autonomous vehicles, where the performance of an actuated signal in VISSIM is compared to our optimization algorithm. The final step of this study is to complete the integration between the optimization algorithm and VISSIM, allowing the testing of mixed traffic, including conventional, connected and autonomous vehicles. Tests using VISSIM have shown that RIO reduces delay by at least 14% when optimizing signal phase and time for conventional vehicles. As the penetration rate of connected vehicles increases, delay can be further reduced by 17-55%, with the results improving as CAV penetration rates approach 100%.

Creating Autonomous Vehicle Systems

Creating Autonomous Vehicle Systems
Author: Shaoshan Liu
Publisher: Morgan & Claypool Publishers
Total Pages: 285
Release: 2017-10-25
Genre: Computers
ISBN: 1681731673

Download Creating Autonomous Vehicle Systems Book in PDF, Epub and Kindle

This book is the first technical overview of autonomous vehicles written for a general computing and engineering audience. The authors share their practical experiences of creating autonomous vehicle systems. These systems are complex, consisting of three major subsystems: (1) algorithms for localization, perception, and planning and control; (2) client systems, such as the robotics operating system and hardware platform; and (3) the cloud platform, which includes data storage, simulation, high-definition (HD) mapping, and deep learning model training. The algorithm subsystem extracts meaningful information from sensor raw data to understand its environment and make decisions about its actions. The client subsystem integrates these algorithms to meet real-time and reliability requirements. The cloud platform provides offline computing and storage capabilities for autonomous vehicles. Using the cloud platform, we are able to test new algorithms and update the HD map—plus, train better recognition, tracking, and decision models. This book consists of nine chapters. Chapter 1 provides an overview of autonomous vehicle systems; Chapter 2 focuses on localization technologies; Chapter 3 discusses traditional techniques used for perception; Chapter 4 discusses deep learning based techniques for perception; Chapter 5 introduces the planning and control sub-system, especially prediction and routing technologies; Chapter 6 focuses on motion planning and feedback control of the planning and control subsystem; Chapter 7 introduces reinforcement learning-based planning and control; Chapter 8 delves into the details of client systems design; and Chapter 9 provides the details of cloud platforms for autonomous driving. This book should be useful to students, researchers, and practitioners alike. Whether you are an undergraduate or a graduate student interested in autonomous driving, you will find herein a comprehensive overview of the whole autonomous vehicle technology stack. If you are an autonomous driving practitioner, the many practical techniques introduced in this book will be of interest to you. Researchers will also find plenty of references for an effective, deeper exploration of the various technologies.

Trajectory Planning of an Autonomous Vehicle in Multi-Vehicle Traffic Scenarios

Trajectory Planning of an Autonomous Vehicle in Multi-Vehicle Traffic Scenarios
Author: Mahdi Morsali
Publisher: Linköping University Electronic Press
Total Pages: 25
Release: 2021-03-25
Genre: Electronic books
ISBN: 9179296939

Download Trajectory Planning of an Autonomous Vehicle in Multi-Vehicle Traffic Scenarios Book in PDF, Epub and Kindle

Tremendous industrial and academic progress and investments have been made in au-tonomous driving, but still many aspects are unknown and require further investigation,development and testing. A key part of an autonomous driving system is an efficient plan-ning algorithm with potential to reduce accidents, or even unpleasant and stressful drivingexperience. A higher degree of automated planning also makes it possible to have a betterenergy management strategy with improved performance through analysis of surroundingenvironment of autonomous vehicles and taking action in a timely manner. This thesis deals with planning of autonomous vehicles in different urban scenarios, road,and vehicle conditions. The main concerns in designing the planning algorithms, are realtime capability, safety and comfort. The planning algorithms developed in this thesis aretested in simulation traffic situations with multiple moving vehicles as obstacles. The re-search conducted in this thesis falls mainly into two parts, the first part investigates decou-pled trajectory planning algorithms with a focus on speed planning, and the second sectionexplores different coupled planning algorithms in spatiotemporal environments where pathand speed are calculated simultaneously. Additionally, a behavioral analysis is carried outto evaluate different tactical maneuvers the autonomous vehicle can have considering theinitial states of the ego and surrounding vehicles. Particularly relevant for heavy duty vehicles, the issues addressed in designing a safe speedplanner in the first part are road conditions such as banking, friction, road curvature andvehicle characteristics. The vehicle constraints on acceleration, jerk, steering, steer ratelimitations and other safety limitations such as rollover are further considerations in speedplanning algorithms. For real time purposes, a minimum working roll model is identified us-ing roll angle and lateral acceleration data collected in a heavy duty truck. In the decoupledplanners, collision avoiding is treated using a search and optimization based planner. In an autonomous vehicle, the structure of the road network is known to the vehicle throughmapping applications. Therefore, this key property can be used in planning algorithms toincrease efficiency. The second part of the thesis, is focused on handling moving obstaclesin a spatiotemporal environment and collision-free planning in complex urban structures.Spatiotemporal planning holds the benefits of exhaustive search and has advantages com-pared to decoupled planning, but the search space in spatiotemporal planning is complex.Support vector machine is used to simplify the search problem to make it more efficient.A SVM classifies the surrounding obstacles into two categories and efficiently calculate anobstacle free region for the ego vehicle. The formulation achieved by solving SVM, con-tains information about the initial point, destination, stationary and moving obstacles.These features, combined with smoothness property of the Gaussian kernel used in SVMformulation is proven to be able to solve complex planning missions in a safe way. Here, three algorithms are developed by taking advantages of SVM formulation, a greedysearch algorithm, an A* lattice based planner and a geometrical based planner. One general property used in all three algorithms is reduced search space through using SVM. In A*lattice based planner, significant improvement in calculation time, is achieved by using theinformation from SVM formulation to calculate a heuristic for planning. Using this heuristic,the planning algorithm treats a simple driving scenario and a complex urban structureequal, as the structure of the road network is included in SVM solution. Inspired byobserving significant improvements in calculation time using SVM heuristic and combiningthe collision information from SVM surfaces and smoothness property, a geometrical planneris proposed that leads to further improvements in calculation time. Realistic driving scenarios such as roundabouts, intersections and takeover maneuvers areused, to test the performance of the proposed algorithms in simulation. Different roadconditions with large banking, low friction and high curvature, and vehicles prone to safetyissues, specially rollover, are evaluated to calculate the speed profile limits. The trajectoriesachieved by the proposed algorithms are compared to profiles calculated by optimal controlsolutions.

Safe and Robust Connected and Autonomous Vehicles in Mixed-autonomy Traffic

Safe and Robust Connected and Autonomous Vehicles in Mixed-autonomy Traffic
Author: Rodolfo Valiente Romero
Publisher:
Total Pages: 0
Release: 2022
Genre:
ISBN:

Download Safe and Robust Connected and Autonomous Vehicles in Mixed-autonomy Traffic Book in PDF, Epub and Kindle

Autonomous Vehicles (AVs) are expected to transform transportation in the near future. Although considerable progress has been made, widespread adoption of AVs will not become a reality until solutions are developed that enable AVs to co-exist with Human-driven Vehicles (HVs). There are still many challenges preventing Connected and Autonomous Vehicles (CAVs) from safely and smoothly navigating. We identify two major challenges in this direction. First, the communication system is not always reliable and suffers from noise and information loss. Second, AV navigation in the presence of HVs is challenging, as HVs continuously update their policies in response to AVs and the social preferences and behaviors of human drivers are unknown. Towards this end, we first propose solutions to improve situational awareness by enabling reliable and robust Cooperative Vehicle Safety (CVS) systems that mitigate the effect of information loss and propose a hybrid learning-based predictive modeling technique for CVS systems. Our prediction system is based on a Hybrid Gaussian Process (HGP) approach that provides accurate vehicle trajectory predictions to compensate for information loss. We use offline real-world data to learn a finite bank of driver models that represent the joint dynamics of the vehicle and the driver's behavior. AVs and HVs equipped with such reliable vehicular communication can coordinate, improving safety and efficiency. However, even in the presence of perfect communication, is still challenging for CAVs to navigate in the presence of humans. Therefore, we study the cooperative maneuver planning problem in a mixed autonomy environment. We frame the mixed-autonomy problem as a Multi-Agent Reinforcement Learning (MARL) problem and propose an approach that allows AVs to learn the decision-making of HVs implicitly from experience, account for all vehicles' interests, and safely adapt to other traffic situations. In contrast with existing works, we quantify AVs' social preferences and propose a distributed reward structure that introduces altruism into their decision-making process, allowing the altruistic AVs to learn to establish coalitions and influence the behavior of HVs. Inspired by humans, we provide our AVs with the capability of anticipating future states and leveraging prediction in the MARL decision-making framework. We propose the integration of two essential components of AVs, i.e, social navigation and prediction, and present a prediction-aware planning and social-aware optimization RL framework. Our proposed framework take advantage of a Hybrid Predictive Network (HPN) that anticipates future observations. The HPN is used in a multi-step prediction chain to compute a window of predicted future observations to be used by the Value Function Network (VFN). Finally, a safe VFN is trained to optimize a social utility using a sequence of previous and predicted observations, and a safety prioritizer is used to leverage the predictions to mask the unsafe actions, constraining the RL policy. The experiments on real-world and simulated data demonstrated the performance improvement of the proposed solutions in both safety and traffic-level metrics and validate the advantages and applicability of our solutions.

Creating Autonomous Vehicle Systems, Second Edition

Creating Autonomous Vehicle Systems, Second Edition
Author: Liu Shaoshan
Publisher: Springer Nature
Total Pages: 221
Release: 2022-05-31
Genre: Mathematics
ISBN: 3031018052

Download Creating Autonomous Vehicle Systems, Second Edition Book in PDF, Epub and Kindle

This book is one of the first technical overviews of autonomous vehicles written for a general computing and engineering audience. The authors share their practical experiences designing autonomous vehicle systems. These systems are complex, consisting of three major subsystems: (1) algorithms for localization, perception, and planning and control; (2) client systems, such as the robotics operating system and hardware platform; and (3) the cloud platform, which includes data storage, simulation, high-definition (HD) mapping, and deep learning model training. The algorithm subsystem extracts meaningful information from sensor raw data to understand its environment and make decisions as to its future actions. The client subsystem integrates these algorithms to meet real-time and reliability requirements. The cloud platform provides offline computing and storage capabilities for autonomous vehicles. Using the cloud platform, new algorithms can be tested so as to update the HD map—in addition to training better recognition, tracking, and decision models. Since the first edition of this book was released, many universities have adopted it in their autonomous driving classes, and the authors received many helpful comments and feedback from readers. Based on this, the second edition was improved by extending and rewriting multiple chapters and adding two commercial test case studies. In addition, a new section entitled “Teaching and Learning from this Book” was added to help instructors better utilize this book in their classes. The second edition captures the latest advances in autonomous driving and that it also presents usable real-world case studies to help readers better understand how to utilize their lessons in commercial autonomous driving projects. This book should be useful to students, researchers, and practitioners alike. Whether you are an undergraduate or a graduate student interested in autonomous driving, you will find herein a comprehensive overview of the whole autonomous vehicle technology stack. If you are an autonomous driving practitioner, the many practical techniques introduced in this book will be of interest to you. Researchers will also find extensive references for an effective, deeper exploration of the various technologies.

Robust Sampling-based Motion Planning for Autonomous Vehicles in Uncertain Environments

Robust Sampling-based Motion Planning for Autonomous Vehicles in Uncertain Environments
Author: Brandon Douglas Luders
Publisher:
Total Pages: 237
Release: 2014
Genre:
ISBN:

Download Robust Sampling-based Motion Planning for Autonomous Vehicles in Uncertain Environments Book in PDF, Epub and Kindle

While navigating, autonomous vehicles often must overcome significant uncertainty in their understanding of the world around them. Real-world environments may be cluttered and highly dynamic, with uncertainty in both the current state and future evolution of environmental constraints. The vehicle may also face uncertainty in its own motion. To provide safe navigation under such conditions, motion planning algorithms must be able to rapidly generate smooth, certifiably robust trajectories in real-time. The primary contribution of this thesis is the development of a real-time motion planning framework capable of generating feasible paths for autonomous vehicles in complex environments, with robustness guarantees under both internal and external uncertainty. By leveraging the trajectory-wise constraint checking of sampling-based algorithms, and in particular rapidly-exploring random trees (RRT), the proposed algorithms can efficiently evaluate and enforce complex robustness conditions. For linear systems under bounded uncertainty, a sampling-based motion planner is presented which iteratively tightens constraints in order to guarantee safety for all feasible uncertainty realizations. The proposed bounded-uncertainty RRT* (BURRT*) algorithm scales favorably with environment complexity. Additionally, by building upon RRT*, BU-RRT* is shown to be asymptotically optimal, enabling it to efficiently generate and optimize robust, dynamically feasible trajectories. For large and/or unbounded uncertainties, probabilistically feasible planning is provided through the proposed chance-constrained RRT (CC-RRT) algorithm. Paths generated by CC-RRT are guaranteed probabilistically feasible for linear systems under Gaussian uncertainty, with extensions considered for nonlinear dynamics, output models, and/or non-Gaussian uncertainty. Probabilistic constraint satisfaction is represented in terms of chance constraints, extending existing approaches by considering both internal and external uncertainty, subject to time-step-wise and path-wise feasibility constraints. An explicit bound on the total risk of constraint violation is developed which can be efficiently evaluated online for each trajectory. The proposed CC-RRT* algorithm extends this approach to provide asymptotic optimality guarantees; an admissible risk-based objective uses the risk bounds to incentivize risk-averse trajectories. Applications of this framework are shown for several motion planning domains, including parafoil terminal guidance and urban navigation, where the system is subject to challenging environmental and uncertainty characterizations. Hardware results demonstrate a mobile robot utilizing this framework to safely avoid dynamic obstacles.

Autonomous driving algorithms and Its IC Design

Autonomous driving algorithms and Its IC Design
Author: Jianfeng Ren
Publisher: Springer Nature
Total Pages: 306
Release: 2023-08-09
Genre: Technology & Engineering
ISBN: 9819928974

Download Autonomous driving algorithms and Its IC Design Book in PDF, Epub and Kindle

With the rapid development of artificial intelligence and the emergence of various new sensors, autonomous driving has grown in popularity in recent years. The implementation of autonomous driving requires new sources of sensory data, such as cameras, radars, and lidars, and the algorithm processing requires a high degree of parallel computing. In this regard, traditional CPUs have insufficient computing power, while DSPs are good at image processing but lack sufficient performance for deep learning. Although GPUs are good at training, they are too “power-hungry,” which can affect vehicle performance. Therefore, this book looks to the future, arguing that custom ASICs are bound to become mainstream. With the goal of ICs design for autonomous driving, this book discusses the theory and engineering practice of designing future-oriented autonomous driving SoC chips. The content is divided into thirteen chapters, the first chapter mainly introduces readers to the current challenges and research directions in autonomous driving. Chapters 2–6 focus on algorithm design for perception and planning control. Chapters 7–10 address the optimization of deep learning models and the design of deep learning chips, while Chapters 11-12 cover automatic driving software architecture design. Chapter 13 discusses the 5G application on autonomous drving. This book is suitable for all undergraduates, graduate students, and engineering technicians who are interested in autonomous driving.

Towards Connected and Autonomous Vehicle Highways

Towards Connected and Autonomous Vehicle Highways
Author: Umar Zakir Abdul Hamid
Publisher: Springer Nature
Total Pages: 345
Release: 2021-06-17
Genre: Technology & Engineering
ISBN: 3030660427

Download Towards Connected and Autonomous Vehicle Highways Book in PDF, Epub and Kindle

This book combines comprehensive multi-angle discussions on fully connected and automated vehicle highway implementation. It covers the current progress of the works towards autonomous vehicle highway development, which encompasses the discussion on the technical, social, and policy as well as security aspects of Connected and Autonomous Vehicles (CAV) topics. This, in return, will be beneficial to a vast amount of readers who are interested in the topics of CAV, Automated Highway and Smart City, among many others. Topics include, but are not limited to, Autonomous Vehicle in the Smart City, Automated Highway, Smart-Cities Transportation, Mobility as a Service, Intelligent Transportation Systems, Data Management of Connected and Autonomous Vehicle, Autonomous Trucks, and Autonomous Freight Transportation. Brings together contributions discussing the latest research in full automated highway implementation; Discusses topics such as autonomous vehicles, intelligent transportation systems, and smart highways; Features contributions from researchers, academics, and professionals from a broad perspective.

Implementation of Intersection Management Algorithm Considering Autonomous and Connected Vehicles

Implementation of Intersection Management Algorithm Considering Autonomous and Connected Vehicles
Author: Maninder Singh
Publisher:
Total Pages: 58
Release: 2013
Genre:
ISBN:

Download Implementation of Intersection Management Algorithm Considering Autonomous and Connected Vehicles Book in PDF, Epub and Kindle

Autonomous vehicle development is on its peak these days. The thought of having self-driving cars is close to fruition. A lot of work has been done in the last decade in the field of Autonomous Systems. There are cars that can drive better than humans on highways. They allow for higher speed and safety. But infrastructure does not exist that is friendly to autonomous vehicles such as at intersections. Autonomous vehicles cannot use existing infrastructure to operate efficiently as the current infrastructure has been designed keeping human driven vehicles in mind. New algorithms need to be developed which will allow autonomous vehicles to use existing infrastructure without entirely changing the infrastructure. In this way both human driven and autonomous vehicles can use the infrastructure and human driven vehicles can also take advantage of developments done in the autonomous vehicle field. This can be achieved using smarter intersections which can communicate with the vehicles using vehicle-to-vehicle (V2V) communication and can use the data from the vehicles to optimize signal phase and timing. Additionally such an intersection can also control the flow of traffic by controlling the speed of vehicles.