Imaging Through Turbulence

Imaging Through Turbulence
Author: Michael C. Roggemann
Publisher: CRC Press
Total Pages: 336
Release: 1996-01-18
Genre: Technology & Engineering
ISBN: 9780849337871

Download Imaging Through Turbulence Book in PDF, Epub and Kindle

Learn how to overcome resolution limitations caused by atmospheric turbulence in Imaging Through Turbulence. This hands-on book thoroughly discusses the nature of turbulence effects on optical imaging systems, techniques used to overcome these effects, performance analysis methods, and representative examples of performance. Neatly pulling together widely scattered material, it covers Fourier and statistical optics, turbulence effects on imaging systems, simulation of turbulence effects and correction techniques, speckle imaging, adaptive optics, and hybrid imaging. Imaging Through Turbulence is written in tutorial style, logically guiding you through these essential topics. It helps you bring down to earth the complexities of coping with turbulence.

Atmospheric Turbulence Simulation Techniques with Application to Flight Analysis

Atmospheric Turbulence Simulation Techniques with Application to Flight Analysis
Author: Show-Tien Wang
Publisher:
Total Pages: 180
Release: 1980
Genre: Atmospheric turbulence
ISBN:

Download Atmospheric Turbulence Simulation Techniques with Application to Flight Analysis Book in PDF, Epub and Kindle

Statistical modeling of atmospheric turbulence is discussed. The statistical properties of atmospheric turbulence, in particular the probability distribution, the spectra, and the coherence are reviewed. Different atmospheric turbulence simulation models are investigated, and appropriate statistical analyses are carried out to verify their validity. The models for simulation are incorporated into a computer model of aircraft flight dynamics. Statistical results of computer simulated landings for an aircraft having characteristics of a DC-8 are reported for the different turbulence simulation techniques. The significance of various degrees of sophistication in the turbulence simulation techniques on the landing performance of the aircraft is discussed.

New Approaches in Modeling Multiphase Flows and Dispersion in Turbulence, Fractal Methods and Synthetic Turbulence

New Approaches in Modeling Multiphase Flows and Dispersion in Turbulence, Fractal Methods and Synthetic Turbulence
Author: F.C.G.A. Nicolleau
Publisher: Springer Science & Business Media
Total Pages: 159
Release: 2011-10-29
Genre: Technology & Engineering
ISBN: 940072506X

Download New Approaches in Modeling Multiphase Flows and Dispersion in Turbulence, Fractal Methods and Synthetic Turbulence Book in PDF, Epub and Kindle

This book contains a collection of the main contributions from the first five workshops held by Ercoftac Special Interest Group on Synthetic Turbulence Models (SIG42. It is intended as an illustration of the sig’s activities and of the latest developments in the field. This volume investigates the use of Kinematic Simulation (KS) and other synthetic turbulence models for the particular application to environmental flows. This volume offers the best syntheses on the research status in KS, which is widely used in various domains, including Lagrangian aspects in turbulence mixing/stirring, particle dispersion/clustering, and last but not least, aeroacoustics. Flow realizations with complete spatial, and sometime spatio-temporal, dependency, are generated via superposition of random modes (mostly spatial, and sometime spatial and temporal, Fourier modes), with prescribed constraints such as: strict incompressibility (divergence-free velocity field at each point), high Reynolds energy spectrum. Recent improvements consisted in incorporating linear dynamics, for instance in rotating and/or stably-stratified flows, with possible easy generalization to MHD flows, and perhaps to plasmas. KS for channel flows have also been validated. However, the absence of "sweeping effects" in present conventional KS versions is identified as a major drawback in very different applications: inertial particle clustering as well as in aeroacoustics. Nevertheless, this issue was addressed in some reference papers, and merits to be revisited in the light of new studies in progress.