Imaginary-time Formulation of Strongly Correlated Nonequilibrium

Imaginary-time Formulation of Strongly Correlated Nonequilibrium
Author: Ryan Heary
Publisher:
Total Pages: 116
Release: 2009
Genre:
ISBN:

Download Imaginary-time Formulation of Strongly Correlated Nonequilibrium Book in PDF, Epub and Kindle

Strongly correlated nanostructures and lattices ofelectrons are studied when these systems reside in a steady-state nonequilibrium. Much of the work done to date has made use of the nonequilibrium real-time Keldysh Green function technique. These methods include: the Keldysh Green function perturbation theory, time-dependent numerical renormalization group, density matrix renormalization group, and diagrammatic quantum Monte Carlo. In the special case of steady-state nonequilibrium we construct an imaginary-time theory. The motivation to do this is simple: there exist an abundant number of well-established strongly correlated computational solvers for imaginary-time theory and perturbation theory on the imaginary-time contour is much more straightforward than that of the real-time contour. The first model system we focus on is a strongly interacting quantum dot situated between source and drainelectron reservoirs.^The steady-state nonequilibrium boundary condition is established by applying a voltage bias $\Phi$ across the reservoirs, in turn modifying the chemical potentials of the leads. For a symmetric voltage drop we have$\mu_{source}=\Phi/2$ and $\mu_{drain}=-\Phi/2$. The dynamics of the electrons are governed by the Hamiltonian $\hat{\mathcal{H}}$ which is inherently independent of the imbalance in the source and drain chemical potentials. The statistics though are determined by the operator $\hat{\mathcal{H}}-\hat{\mathcal{Y}}$, where $\hat{\mathcal{Y}}$ imposes the nonequilibrium boundary condition. We show that it is possible to construct a single effective Hamiltonian $\hat{\mathcal{K}}$ able to describe both the dynamics and statistics of the system. Upon formulating the theory we explicitly show that it is consistent with the real-time Keldysh theory both formally and through an example using perturbation theory.^In these systems there exists a strong interplay between the interactions and nonequilibrium leading to novel nonperturbative phenomena. Therefore, we combine our theory with the Hirsch-Fye quantum Monte Carlo algorithm to study these effects. We then propose a nonequilibrium Hubbard model in the special limit of infinite dimensions (dynamical mean-field theory) where the problem is reduced to solving a self consistent nonequilibrium impurity model. The final chapter concentrates on electron spin and charge filtering through a quantum dot embedded Aharonov-Bohm interferometer.

Quench Dynamics in Interacting and Superconducting Nanojunctions

Quench Dynamics in Interacting and Superconducting Nanojunctions
Author: Rubén Seoane Souto
Publisher: Springer Nature
Total Pages: 226
Release: 2020-02-05
Genre: Technology & Engineering
ISBN: 3030365956

Download Quench Dynamics in Interacting and Superconducting Nanojunctions Book in PDF, Epub and Kindle

Effects of many-body interactions and superconducting correlations have become central questions in the quantum transport community. While most previous works investigating current fluctuations in nanodevices have been restricted to the stationary regime, Seoane's thesis extends these studies to the time domain. It provides relevant information about the time onset of electronic correlations mediated by interactions and superconductivity. This knowledge is essential for the development of fast electronic devices, as well as novel applications requiring fast manipulations, such as quantum information processing. In addition, the thesis establishes contact with issues of broad current interest such as non-equilibrium quantum phase transitions.

Spintronics Handbook, Second Edition: Spin Transport and Magnetism

Spintronics Handbook, Second Edition: Spin Transport and Magnetism
Author: Evgeny Y. Tsymbal
Publisher: CRC Press
Total Pages: 555
Release: 2019-06-26
Genre: Science
ISBN: 042980525X

Download Spintronics Handbook, Second Edition: Spin Transport and Magnetism Book in PDF, Epub and Kindle

Spintronics Handbook, Second Edition offers an update on the single most comprehensive survey of the two intertwined fields of spintronics and magnetism, covering the diverse array of materials and structures, including silicon, organic semiconductors, carbon nanotubes, graphene, and engineered nanostructures. It focuses on seminal pioneering work, together with the latest in cutting-edge advances, notably extended discussion of two-dimensional materials beyond graphene, topological insulators, skyrmions, and molecular spintronics. The main sections cover physical phenomena, spin-dependent tunneling, control of spin and magnetism in semiconductors, and spin-based applications. Features: Presents the most comprehensive reference text for the overlapping fields of spintronics (spin transport) and magnetism. Covers the full spectrum of materials and structures, from silicon and organic semiconductors to carbon nanotubes, graphene, and engineered nanostructures. Extends coverage of two-dimensional materials beyond graphene, including molybdenum disulfide and study of their spin relaxation mechanisms Includes new dedicated chapters on cutting-edge topics such as spin-orbit torques, topological insulators, half metals, complex oxide materials and skyrmions. Discusses important emerging areas of spintronics with superconductors, spin-wave spintronics, benchmarking of spintronics devices, and theory and experimental approaches to molecular spintronics. Evgeny Tsymbal's research is focused on computational materials science aiming at the understanding of fundamental properties of advanced ferromagnetic and ferroelectric nanostructures and materials relevant to nanoelectronics and spintronics. He is a George Holmes University Distinguished Professor at the Department of Physics and Astronomy of the University of Nebraska-Lincoln (UNL), Director of the UNL’s Materials Research Science and Engineering Center (MRSEC), and Director of the multi-institutional Center for NanoFerroic Devices (CNFD). Igor Žutić received his Ph.D. in theoretical physics at the University of Minnesota. His work spans a range of topics from high-temperature superconductors and ferromagnetism that can get stronger as the temperature is increased, to prediction of various spin-based devices. He is a recipient of 2006 National Science Foundation CAREER Award, 2005 National Research Council/American Society for Engineering Education Postdoctoral Research Award, and the National Research Council Fellowship (2003-2005). His research is supported by the National Science Foundation, the Office of Naval Research, the Department of Energy, and the Airforce Office of Scientific Research.

Advances in Nanotechnology Research and Application: 2011 Edition

Advances in Nanotechnology Research and Application: 2011 Edition
Author:
Publisher: ScholarlyEditions
Total Pages: 8760
Release: 2012-01-09
Genre: Technology & Engineering
ISBN: 1464920583

Download Advances in Nanotechnology Research and Application: 2011 Edition Book in PDF, Epub and Kindle

Advances in Nanotechnology Research and Application: 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Nanotechnology. The editors have built Advances in Nanotechnology Research and Application: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Nanotechnology in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Advances in Nanotechnology Research and Application: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.

Low-Dimensional Functional Materials

Low-Dimensional Functional Materials
Author: Reinhold Egger
Publisher: Springer
Total Pages: 276
Release: 2013-06-12
Genre: Science
ISBN: 9400766181

Download Low-Dimensional Functional Materials Book in PDF, Epub and Kindle

Maintaining and improving energy security is one of the biggest challenges worldwide. The NATO ARW conference in Tashkent, October 2012, was devoted to discussing visions and concepts that are currently discussed in different research fields. Leading scientists have written concise contributions to introduce the reader to this exciting topic. The present volume summarizes the discussions at the conference.

Quantum Field Theory of Non-equilibrium States

Quantum Field Theory of Non-equilibrium States
Author: Jørgen Rammer
Publisher: Cambridge University Press
Total Pages: 0
Release: 2011-03-03
Genre: Science
ISBN: 9780521188005

Download Quantum Field Theory of Non-equilibrium States Book in PDF, Epub and Kindle

Quantum field theory is the application of quantum mechanics to systems with infinitely many degrees of freedom. This 2007 textbook presents quantum field theoretical applications to systems out of equilibrium. It introduces the real-time approach to non-equilibrium statistical mechanics and the quantum field theory of non-equilibrium states in general. It offers two ways of learning how to study non-equilibrium states of many-body systems: the mathematical canonical way and an easy intuitive way using Feynman diagrams. The latter provides an easy introduction to the powerful functional methods of field theory, and the use of Feynman diagrams to study classical stochastic dynamics is considered in detail. The developed real-time technique is applied to study numerous phenomena in many-body systems. Complete with numerous exercises to aid self-study, this textbook is suitable for graduate students in statistical mechanics and condensed matter physics.

Dynamical Mean-Field Theory for Strongly Correlated Materials

Dynamical Mean-Field Theory for Strongly Correlated Materials
Author: Volodymyr Turkowski
Publisher: Springer Nature
Total Pages: 393
Release: 2021-04-22
Genre: Technology & Engineering
ISBN: 3030649040

Download Dynamical Mean-Field Theory for Strongly Correlated Materials Book in PDF, Epub and Kindle

​​This is the first book that provides a detailed summary of one of the most successful new condensed matter theories - dynamical mean-field theory (DMFT) - in both static and dynamical cases of systems of different sizes. DMFT is one of the most successful approaches to describe the physical properties of systems with strong electron-electron correlations such as bulk materials, multi-layers, surfaces, 2D materials and nanostructures in both metallic and insulating phases. Strongly correlated materials usually include partially-filled localized d- or f-orbitals, and DMFT takes into account crucial for these systems time-resolved interaction between electrons when they “meet” on one atom and occupy one of these orbitals. The First Part of the book covers the general formalism of DMFT as a many-body theory, followed by generalizations of the approach on the cases of finite systems and out-of-equilibrium regime. In the last Chapter of the First Part we discuss generalizations of the approach on the case when the non-local interactions are taken into account. The Second Part of the book covers methodologies of merging DMFT with ab initio static Density Functional Theory (DFT) and Time-Dependent DFT (TDDFT) approaches. Such combined DFT+DMFT and DMFT+TDDFT computational techniques allow one to include the effects of strong electron-electron correlations at the accurate ab initio level. These tools can be applied to complex multi-atom multi-orbital systems currently not accessible to DMFT. The book helps broad audiences of students and researchers from the theoretical and computational communities of condensed matter physics, material science, and chemistry to become familiar with this state-of-art approach and to use it for reaching a deeper understanding of the properties of strongly correlated systems and for synthesis of new technologically-important materials.

Nonequilibrium Physics at Short Time Scales

Nonequilibrium Physics at Short Time Scales
Author: Klaus Morawetz
Publisher: Springer Science & Business Media
Total Pages: 499
Release: 2013-03-09
Genre: Science
ISBN: 3662089904

Download Nonequilibrium Physics at Short Time Scales Book in PDF, Epub and Kindle

This introductory level text addresses the broad range of nonequilibrium phenomena observed at short time scales. It focuses on the important questions of correlations and memory effects in dense interacting systems. Experiments on very short time scales are characterized, in particular, by strong correlations far from equilibrium, by nonlinear dynamics, and by the related phenomena of turbulence and chaos. The impressive successes of experiments using pulsed lasers to study the properties of matter and of the new methods of analysis of the early phases of heavy ion reactions have necessitated a review of the available many-body theoretical methods. The aim of this book is thus to provide an introduction to the experimental and theoretical methods that help us to understand the behaviour of such systems when disturbed on very short time scales.

Lectures on Non-equilibrium Theory of Condensed Matter

Lectures on Non-equilibrium Theory of Condensed Matter
Author: Ladislaus Alexander B nyai
Publisher: World Scientific
Total Pages: 247
Release: 2006
Genre: Science
ISBN: 9812567496

Download Lectures on Non-equilibrium Theory of Condensed Matter Book in PDF, Epub and Kindle

This book discusses in depth many of the key problems in non-equilibrium physics. The origin of macroscopic irreversible behavior receives particular attention and is illustrated in the framework of solvable models. An updated discussion on the linear response focuses on the correct electrodynamic aspects, which are essential for example, in the proof of the Nyquist theorem. The material covers the scaling relationship between different levels of description (kinetic to hydrodynamic) as well as spontaneous symmetry breaking in real time in terms of nonlinear dynamics (attractors), illustrated using the example of Bose-Einstein condensation. The presentation also includes the latest developments ? quantum kinetics ? related to modern ultrafast spectroscopy, where transition from reversible to irreversible behavior occurs.

Strongly Interacting Quantum Systems out of Equilibrium

Strongly Interacting Quantum Systems out of Equilibrium
Author: Thierry Giamarchi
Publisher: Oxford University Press
Total Pages: 607
Release: 2016-11-17
Genre: Science
ISBN: 0191080535

Download Strongly Interacting Quantum Systems out of Equilibrium Book in PDF, Epub and Kindle

Over the last decade new experimental tools and theoretical concepts are providing new insights into collective nonequilibrium behavior of quantum systems. The exquisite control provided by laser trapping and cooling techniques allows us to observe the behavior of condensed bose and degenerate Fermi gases under nonequilibrium drive or after `quenches' in which a Hamiltonian parameter is suddenly or slowly changed. On the solid state front, high intensity short-time pulses and fast (femtosecond) probes allow solids to be put into highly excited states and probed before relaxation and dissipation occur. Experimental developments are matched by progress in theoretical techniques ranging from exact solutions of strongly interacting nonequilibrium models to new approaches to nonequilibrium numerics. The summer school `Strongly interacting quantum systems out of equilibrium' held at the Les Houches School of Physics as its XCIX session was designed to summarize this progress, lay out the open questions and define directions for future work. This books collects the lecture notes of the main courses given in this summer school.