A Quiet Tunnel Investigation of Hypersonic Boundary-Layer Stability Over a Cooled, Flared Cone

A Quiet Tunnel Investigation of Hypersonic Boundary-Layer Stability Over a Cooled, Flared Cone
Author: National Aeronautics and Space Administration NASA
Publisher:
Total Pages: 30
Release: 2018-10-23
Genre:
ISBN: 9781729140024

Download A Quiet Tunnel Investigation of Hypersonic Boundary-Layer Stability Over a Cooled, Flared Cone Book in PDF, Epub and Kindle

A flared-cone model under adiabatic and cooled-wall conditions was placed in a calibrated, low-disturbance Mach 6 flow and the stability of the boundary layer was investigated using a prototype constant-voltage anemometer. The results were compared with linear-stability theory predictions and good agreement was found in the prediction of second-mode frequencies and growth. In addition, the same 'N = 10' criterion used to predict boundary-layer transition in subsonic, transonic, and supersonic flows under low freestream noise conditions was found to be applicable for the hypersonic flow regime as well. Under cooled-wall conditions, a unique set of spectral data was acquired that documents the linear, nonlinear, and breakdown regions associated with the transition of hypersonic flow under low-noise conditions. Blanchard, Alan E. and Selby, Gregory V. and Wilkinson, Stephen P. Langley Research Center NCC1-180...

Hypersonic Boundary-Layer Stability Experiments on a Flared-Cone Model at Angle of Attack in a Quiet Wind Tunnel

Hypersonic Boundary-Layer Stability Experiments on a Flared-Cone Model at Angle of Attack in a Quiet Wind Tunnel
Author: National Aeronautics and Space Adm Nasa
Publisher:
Total Pages: 134
Release: 2018-11-18
Genre:
ISBN: 9781731266217

Download Hypersonic Boundary-Layer Stability Experiments on a Flared-Cone Model at Angle of Attack in a Quiet Wind Tunnel Book in PDF, Epub and Kindle

An experimental investigation of the effects of angle of attack on hypersonic boundary-layer stability on a flared-cone model was conducted in the low-disturbance Mach-6 Nozzle-Test Chamber Facility at NASA Langley Research Center. This unique facility provided a 'quiet' flow test environment which is well suited for stability experiments because the low levels of freestream 'noise' minimize artificial stimulation of flow-disturbance growth. Surface pressure and temperature measurements documented the adverse-pressure gradient and transition-onset location. Hot-wire anemometry diagnostics were applied to identify the instability mechanisms which lead to transition. In addition, the mean flow over the flared-cone geometry was modeled by laminar Navier-Stokes computations. Results show that the boundary layer becomes more stable on the windward ray and less stable on the leeward ray relative to the zero-degree angle-of-attack case. The second-mode instability dominates the transition process at a zero-degree angle of attack, however, on the windward ray at an angle of attack this mode was completely stabilized. The less-dominant first-mode instability was slightly destabilized on the windward ray. Non-linear mechanisms such as saturation and harmonic generation are identified from the flow-disturbance bispectra. Doggett, Glen P. and Chokani, Ndaona Langley Research Center ANGLE OF ATTACK; AERODYNAMIC NOISE; ZERO ANGLE OF ATTACK; BOUNDARY LAYER STABILITY; HYPERSONIC SPEED; NAVIER-STOKES EQUATION; HYPERSONICS; AERODYNAMIC STABILITY; HYPERSONIC BOUNDARY LAYER; WIND TUNNELS; VELOCITY MEASUREMENT; TEST CHAMBERS; LOW NOISE...

Hypersonic Boundary Layer Stability Experiments in a Quiet Wind Tunnel with Bluntness Effects

Hypersonic Boundary Layer Stability Experiments in a Quiet Wind Tunnel with Bluntness Effects
Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
Total Pages: 232
Release: 2018-07-25
Genre:
ISBN: 9781724242556

Download Hypersonic Boundary Layer Stability Experiments in a Quiet Wind Tunnel with Bluntness Effects Book in PDF, Epub and Kindle

Hypersonic boundary layer measurements over a flared cone were conducted in a Mach 6 quiet wind tunnel at a freestream unit Reynolds number of 2.82 million/ft. This Reynolds number provided laminar-to-transitional flow over the cone model in a low-disturbance environment. Four interchangeable nose-tips, including a sharp-tip, were tested. Point measurements with a single hot-wire using a novel constant voltage anemometer were used to measure the boundary layer disturbances. Surface temperature and schlieren measurements were also conducted to characterize the transitional state of the boundary layer and to identify instability modes. Results suggest that second mode disturbances were the most unstable and scaled with the boundary layer thickness. The second mode integrated growth rates compared well with linear stability theory in the linear stability regime. The second mode is responsible for transition onset despite the existence of a second mode subharmonic. The subharmonic disturbance wavelength also scales with the boundary layer thickness. Furthermore, the existence of higher harmonics of the fundamental suggests that nonlinear disturbances are not associated with 'high' free stream disturbance levels. Nose-tip radii greater than 2.7% of the base radius completely stabilized the second mode. Lachowicz, Jason T. and Chokani, Ndaona Langley Research Center NASA-CR-198272, NAS 1.26:198272 NCC1-183; RTOP-505-59-50-02...

An Experimental Investigation of Wall-Cooling Effects on Hypersonic Boundary-Layer Stability in a Quiet Wind Tunnel

An Experimental Investigation of Wall-Cooling Effects on Hypersonic Boundary-Layer Stability in a Quiet Wind Tunnel
Author: Alan E. Blanchard
Publisher:
Total Pages: 120
Release: 1996
Genre: Aerodynamics, Hypersonic
ISBN:

Download An Experimental Investigation of Wall-Cooling Effects on Hypersonic Boundary-Layer Stability in a Quiet Wind Tunnel Book in PDF, Epub and Kindle

One of the primary reasons for developing quiet tunnels is for the investigation of high-speed boundary-layer stability and transition phenomena without the transition-promoting effects of acoustic radiation from tunnel walls. In this experiment, a flared-cone model under adiabatic- and cooled-wall conditions was placed in a calibrated, "quiet" Mach 6 flow and the stability of the boundary layer was investigated using a prototype constant-voltage anemometer. The results of this experiment were compared with linear-stability theory predictions and good agreement was found in the prediction of second-mode frequencies and growth. In addition, the same "N = 10" criterion used to predict boundary-layer transition in subsonic, transonic, and supersonic flows was found to be applicable for the hypersonic flow regime as well. Under cooled-wall conditions, a unique set of continuous spectra data was acquired that documents the linear, nonlinear, and breakdown regions associated with the transition of hypersonic flow under low-noise conditions

Boundary-Layer Stability and Transition on a Flared Cone in a Mach 6 Quiet Wind Tunnel

Boundary-Layer Stability and Transition on a Flared Cone in a Mach 6 Quiet Wind Tunnel
Author: Jerrod William Hofferth
Publisher:
Total Pages:
Release: 2013
Genre:
ISBN:

Download Boundary-Layer Stability and Transition on a Flared Cone in a Mach 6 Quiet Wind Tunnel Book in PDF, Epub and Kindle

A key remaining challenge in the design of hypersonic vehicles is the incomplete understanding of the process of boundary-layer transition. Turbulent heating rates are substantially higher than those for a laminar boundary layer, and large uncertainties in transition prediction therefore demand conservative, inefficient designs for thermal protection systems. It is only through close collaboration between theory, experiment, and computation that the state of the art can be advanced, but experiments relevant to flight require ground-test facilities with very low disturbance levels. To enable this work, a unique Mach 6 low-disturbance wind tunnel, previously of NASA Langley Research Center, is established within a new pressure-vacuum blow-down infrastructure at Texas A&M. A 40-second run time at constant conditions enables detailed measurements for comparison with computation. The freestream environment is extensively characterized, with a large region of low-disturbance flow found to be reliably present for unit Reynolds numbers Re