Theory and Computation in Hydrodynamic Stability

Theory and Computation in Hydrodynamic Stability
Author: W. O. Criminale
Publisher: Cambridge University Press
Total Pages: 566
Release: 2018-12-06
Genre: Science
ISBN: 110869800X

Download Theory and Computation in Hydrodynamic Stability Book in PDF, Epub and Kindle

The study of hydrodynamic stability is fundamental to many subjects, ranging from geophysics and meteorology through to engineering design. This treatise covers both classical and modern aspects of the subject, systematically developing it from the simplest physical problems, then progressing to the most complex, considering linear and nonlinear situations, and analyzing temporal and spatial stability. The authors examine each problem both analytically and numerically. Many relevant fluid flows are treated, including those where the fluid may be compressible, or those from geophysics, or those that require salient geometries for description. Details of initial-value problems are explored equally with those of stability. The text includes copious illustrations and an extensive bibliography, making it suitable for courses on hydrodynamic stability or as an authoritative reference for researchers. In this second edition the opportunity has been taken to update the text and, most importantly, provide solutions to the numerous extended exercises.

Theory and Computation of Hydrodynamic Stability

Theory and Computation of Hydrodynamic Stability
Author: W. O. Criminale
Publisher: Cambridge University Press
Total Pages: 465
Release: 2003-10-23
Genre: Mathematics
ISBN: 0521632005

Download Theory and Computation of Hydrodynamic Stability Book in PDF, Epub and Kindle

The study of hydrodynamic stability is fundamental to many subjects, ranging from geophysics and meteorology through to engineering design. This treatise covers both classical and modern aspects of the subject, systematically developing it from the simplest physical problems, then progressing chapter by chapter to the most complex, considering linear and nonlinear situations, and analysing temporal and spatial stability. The authors examine each problem both analytically and numerically: many chapters end with an appendix outlining relevant numerical techniques. All relevant fluid flows are treated, including those where the fluid may be compressible, or those from geophysics, or those that require salient geometries for description. Details of initial-value problems are explored equally with those of stability. As a result, the early transient period as well as the asymptotic fate for perturbations for a flow can be assessed. The text is enriched with many exercises, copious illustrations and an extensive bibliography and the result is a book that can be used with courses on hydrodynamic stability or as an authoritative reference for researchers.

Stability of Parallel Flows

Stability of Parallel Flows
Author: R. Betchov
Publisher: Elsevier
Total Pages: 345
Release: 2012-12-02
Genre: Science
ISBN: 0323162606

Download Stability of Parallel Flows Book in PDF, Epub and Kindle

Stability of Parallel Flows provides information pertinent to hydrodynamical stability. This book explores the stability problems that occur in various fields, including electronics, mechanics, oceanography, administration, economics, as well as naval and aeronautical engineering. Organized into two parts encompassing 10 chapters, this book starts with an overview of the general equations of a two-dimensional incompressible flow. This text then explores the stability of a laminar boundary layer and presents the equation of the inviscid approximation. Other chapters present the general equations governing an incompressible three-dimensional flow, which requires the massive use of a computer. This book discusses as well the experimental studies on the oscillations of the boundary layer wherein the mean flow is affected by the presence of oscillations. The final chapter describes the concept of the stability of turbulent flows found in boundary layers, wakes, and jets. This book is a valuable resource for physicists, mathematicians, engineers, scientists, and researchers.

Stability and Transition in Shear Flows

Stability and Transition in Shear Flows
Author: Peter J. Schmid
Publisher: Springer Science & Business Media
Total Pages: 561
Release: 2012-12-06
Genre: Science
ISBN: 1461301858

Download Stability and Transition in Shear Flows Book in PDF, Epub and Kindle

A detailed look at some of the more modern issues of hydrodynamic stability, including transient growth, eigenvalue spectra, secondary instability. It presents analytical results and numerical simulations, linear and selected nonlinear stability methods. By including classical results as well as recent developments in the field of hydrodynamic stability and transition, the book can be used as a textbook for an introductory, graduate-level course in stability theory or for a special-topics fluids course. It is equally of value as a reference for researchers in the field of hydrodynamic stability theory or with an interest in recent developments in fluid dynamics. Stability theory has seen a rapid development over the past decade, this book includes such new developments as direct numerical simulations of transition to turbulence and linear analysis based on the initial-value problem.

Instability and Transition

Instability and Transition
Author: M.Y. Hussaini
Publisher: Springer Science & Business Media
Total Pages: 509
Release: 2012-12-06
Genre: Science
ISBN: 1461234328

Download Instability and Transition Book in PDF, Epub and Kindle

The ability to predict and control viscous flow phenomena is becoming increasingly important in modern industrial application. The Instability and Transition Workshop at Langley was extremely important in help§ ing the scientists community to access the state of knowledge in the area of transition from laminar to turbulent flow, to identify promising future areas of research and to build future interactions between researchers worldwide working in the areas of theoretical, experimental and computational fluid and aero dynamics. The set of two volume contains panel discussions and research contribution with the following objectives: (1) expose the academic community to current technologically important issues of instability and transitions in shear flows over the entire speed range, (2) acquaint the academic community with the unique combination of theoretical, computational and experimental capabilities at LaRC and foster interaction with these facilities. (3) review current state-of-the-art and propose future directions for instability and transition research, (4) accelerate progress in elucidating basic understanding of transition phenomena and in transferring this knowledge into improved design methodologies through improved transition modeling, and (5) establish mechanism for continued interaction.

Control of Flow Instabilities and Unsteady Flows

Control of Flow Instabilities and Unsteady Flows
Author: G.E.A. Meier
Publisher: Springer
Total Pages: 327
Release: 2014-05-04
Genre: Technology & Engineering
ISBN: 3709126886

Download Control of Flow Instabilities and Unsteady Flows Book in PDF, Epub and Kindle

This volume contributes to one of the most important topics of Fluid Mechanics in future and presents recent research results on control theory and applied control methods. Understanding and handling of control methods of nonlinear systems, typical of Fluid Mechanics, is the key to reduce losses and to improve the efficiency and safety of technical processes.

Modeling and Computation of Boundary-Layer Flows

Modeling and Computation of Boundary-Layer Flows
Author: Tuncer Cebeci
Publisher: Springer
Total Pages: 502
Release: 2005-05-04
Genre: Science
ISBN: 9783540244592

Download Modeling and Computation of Boundary-Layer Flows Book in PDF, Epub and Kindle

This second edition of the book, Modeling and Computation of Boundary-Layer Flows^ extends the topic to include compressible flows. This implies the inclusion of the energy equation and non-constant fluid properties in the continuity and momentum equations. The necessary additions are included in new chapters, leaving the first nine chapters to serve as an introduction to incompressible flows and, therefore, as a platform for the extension. This part of the book can be used for a one semester course as described below. Improvements to the incompressible flows portion of the book include the removal of listings of computer programs and their description, and their incor poration in two CD-ROMs. A listing of the topics incorporated in the CD-ROM is provided before the index. In Chapter 7 there is a more extended discussion of initial conditions for three-dimensional flows, application of the characteristic box to a model problem and discussion of flow separation in three-dimensional laminar flows. There are also changes to Chapter 8, which now includes new sections on Tollmien-Schlichting and cross-flow instabilities and on the predic tion of transition with parabolised stability equations, and Chapter 9 provides a description of the rational behind interactive boundary-layer procedures.