Hybrid Energy System Models

Hybrid Energy System Models
Author: Asmae Berrada
Publisher: Academic Press
Total Pages: 382
Release: 2020-12-10
Genre: Technology & Engineering
ISBN: 0128214031

Download Hybrid Energy System Models Book in PDF, Epub and Kindle

Hybrid Energy System Models presents a number of techniques to model a large variety of hybrid energy systems in all aspects of sizing, design, operation, economic dispatch, optimization and control. The book's authors present a number of new methods to model hybrid energy systems and several renewable energy systems, including photovoltaic, solar plus wind and hydropower, energy storage, and combined heat and power systems. With critical modeling examples, global case studies and techno-economic modeling integrated in every chapter, this book is essential to understanding the development of affordable energy systems globally, particularly from renewable resources. With a detailed overview and a comparison of hybrid energy systems used in different regions, as well as innovative hybrid energy system designs covered, this book is useful for practicing power and energy engineers needing answers for what factors to consider when modeling a hybrid energy system and what tools are available to model hybrid systems. Combines research on several renewable energy systems, energy storage, and combined heat and power systems into a single informative resource on hybrid energy systems Includes significant global case studies of current and novel modeling techniques for comparison Covers numerical simulations of hybrid systems energy modeling and applications

Hybrid Renewable Energy Systems and Microgrids

Hybrid Renewable Energy Systems and Microgrids
Author: Ersan Kabalci
Publisher: Academic Press
Total Pages: 529
Release: 2020-11-21
Genre: Technology & Engineering
ISBN: 012823248X

Download Hybrid Renewable Energy Systems and Microgrids Book in PDF, Epub and Kindle

Hybrid Renewable Energy Systems and Microgrids covers the modeling and analysis for each type of integrated and operational hybrid energy system. Looking at the fundamentals for conventional energy systems, decentralized generation systems, RES technologies and hybrid integration of RES power plants, the most important contribution this book makes is combining emerging energy systems that improve micro and smart grid systems and their components. Sections cover traditional system characteristics, features, challenges and benefits of hybrid energy systems over the conventional power grid, the deployment of emerging power electronic technologies, and up-to-date electronic devices and systems, including AC and DC waveforms. Conventional, emerging and hierarchical control methods and technologies applied in microgrid operations are covered to give researchers and practitioners the information needed to ensure reliability, resilience and flexibility of implemented hybrid energy systems. Presents detailed contents on emerging power networks provided by decentralized and distributed generation approaches Covers driving factors, photovoltaic based power plant modeling and planning studies Introduces hierarchical control methods and technologies applied in microgrid operations to ensure reliability, resilience and flexibility of hybrid energy systems

Hybrid Energy System Models

Hybrid Energy System Models
Author: Asmae Berrada
Publisher: Academic Press
Total Pages: 384
Release: 2020-11-21
Genre: Technology & Engineering
ISBN: 012821404X

Download Hybrid Energy System Models Book in PDF, Epub and Kindle

Hybrid Energy System Models presents a number of techniques to model a large variety of hybrid energy systems in all aspects of sizing, design, operation, economic dispatch, optimization and control. The book's authors present a number of new methods to model hybrid energy systems and several renewable energy systems, including photovoltaic, solar plus wind and hydropower, energy storage, and combined heat and power systems. With critical modeling examples, global case studies and techno-economic modeling integrated in every chapter, this book is essential to understanding the development of affordable energy systems globally, particularly from renewable resources. With a detailed overview and a comparison of hybrid energy systems used in different regions, as well as innovative hybrid energy system designs covered, this book is useful for practicing power and energy engineers needing answers for what factors to consider when modeling a hybrid energy system and what tools are available to model hybrid systems. Combines research on several renewable energy systems, energy storage, and combined heat and power systems into a single informative resource on hybrid energy systems Includes significant global case studies of current and novel modeling techniques for comparison Covers numerical simulations of hybrid systems energy modeling and applications

Modeling and Simulation of Smart Grid Integrated with Hybrid Renewable Energy Systems

Modeling and Simulation of Smart Grid Integrated with Hybrid Renewable Energy Systems
Author: Mohamed Abdelaziz Mohamed
Publisher: Springer
Total Pages: 91
Release: 2017-08-03
Genre: Technology & Engineering
ISBN: 3319647954

Download Modeling and Simulation of Smart Grid Integrated with Hybrid Renewable Energy Systems Book in PDF, Epub and Kindle

This book presents a comprehensive definition of smart grids and their benefits, and compares smart and traditional grids. It also introduces a design methodology for stand-alone hybrid renewable energy system with and without applying the smart grid concepts for comparison purposes. It discusses using renewable energy power plants to feed loads in remote areas as well as in central power plants connected to electric utilities. Smart grid concepts used in the design of the hybrid renewable power systems can reduce the size of components, which can be translated to a reduction in the cost of generated energy. The proposed hybrid renewable energy system includes wind, photovoltaic, battery, and diesel, and is used initially to feed certain loads, covering the load required completely. The book introduces a novel methodology taking the smart grid concept into account by dividing the loads into high and low priority parts. The high priority part should be supplied at any generated conditions. However, the low priority loads can be shifted to the time when the generated energy from renewable energy sources is greater than the high priority loads requirements. The results show that the use of this smart grid concept reduces the component size and the cost of generated energy compared to that without dividing the loads. The book also describes the use of smart optimization techniques like particle swarm optimization (PSO) and genetic algorithm (GA) to optimally design the hybrid renewable energy system. This book provides an excellent background to renewable energy sources, optimal sizing and locating of hybrid renewable energy sources, the best optimization methodologies for sizing and designing the components of hybrid renewable energy systems, and offers insights into using smart grid concepts in the system’s design and sizing. It also helps readers understand the dispatch methodology and how to connect the system’s different components, their modeling, and the cost analysis of the system.

Hybrid Energy Systems for Offshore Applications

Hybrid Energy Systems for Offshore Applications
Author: Ibrahim Dincer
Publisher: Elsevier
Total Pages: 328
Release: 2021-05-20
Genre: Science
ISBN: 0323898238

Download Hybrid Energy Systems for Offshore Applications Book in PDF, Epub and Kindle

There has been a strong need to enhance the utilization of renewable energy systems (RESs) from onshore to offshore applications where oil and gas companies are pivoting to integrate such renewable energy options into their offshore operations to lower their carbon footprint, extend the lifetime of their assets, and expand their market. In this regard, innovative hybrid energy systems, such as "Power to Gas” (P2G) and "Power to Liquid” (P2L) options, as well as novel integration strategies for "Gas to Power” (G2P) systems, offer the opportunity to implement solutions energy transition, paving the way to offshore RES deployment. Hybrid Energy Systems for Offshore Applications delivers a comprehensive presentation of state of the art and perspective developments of offshore RES exploitation strategies and technologies, and provides a unique portfolio of decision-making methodologies supporting the selection of the most suitable options for offshore renewable energy production at a specific site. System modeling and analysis along with the definitions of multicriteria methodologies and strategies based on sustainability, environmental impact, and safety performance indicators are addressed in an integrated fashion. Rounding out with both research and practical applications explained, this book gives academicians and industrial professionals fundamentals and methods for integrated performance analysis of innovative systems addressing offshore RES exploitation, sustainable chemical and power production, better efficiency, lower costs, lower environmental impact, and higher inherent safety. Harmonized presentation of RESs Unique coverage on hybrid energy systems and their offshore applications Comprehensive thermodynamic analysis and evaluation of the developed systems Process and system modeling, analysis, and decision-making methodologies for offshore P2G, P2L, and G2P solutions Sustainability modeling and assessment studies for various offshore applications Distinct parametric studies, illustrations, and case studies Specific sustainability and safety performance indicators for comparative evaluations

Renewable Energy Systems

Renewable Energy Systems
Author: Ahmad Taher Azar
Publisher: Academic Press
Total Pages: 734
Release: 2021-09-09
Genre: Computers
ISBN: 0128203986

Download Renewable Energy Systems Book in PDF, Epub and Kindle

Renewable Energy Systems: Modelling, Optimization and Control aims to cross-pollinate recent advances in the study of renewable energy control systems by bringing together diverse scientific breakthroughs on the modeling, control and optimization of renewable energy systems by leading researchers. The book brings together the most comprehensive collection of modeling, control theorems and optimization techniques to help solve many scientific issues for researchers in renewable energy and control engineering. Many multidisciplinary applications are discussed, including new fundamentals, modeling, analysis, design, realization and experimental results. The book also covers new circuits and systems to help researchers solve many nonlinear problems. This book fills the gaps between different interdisciplinary applications, ranging from mathematical concepts, modeling, and analysis, up to the realization and experimental work. Covers modeling, control theorems and optimization techniques which will solve many scientific issues for researchers in renewable energy Discusses many multidisciplinary applications with new fundamentals, modeling, analysis, design, realization and experimental results Includes new circuits and systems, helping researchers solve many nonlinear problems

Modeling and Simulation of Energy Systems

Modeling and Simulation of Energy Systems
Author: Thomas A. Adams II
Publisher: MDPI
Total Pages: 496
Release: 2019-11-06
Genre: Technology & Engineering
ISBN: 3039215183

Download Modeling and Simulation of Energy Systems Book in PDF, Epub and Kindle

Energy Systems Engineering is one of the most exciting and fastest growing fields in engineering. Modeling and simulation plays a key role in Energy Systems Engineering because it is the primary basis on which energy system design, control, optimization, and analysis are based. This book contains a specially curated collection of recent research articles on the modeling and simulation of energy systems written by top experts around the world from universities and research labs, such as Massachusetts Institute of Technology, Yale University, Norwegian University of Science and Technology, National Energy Technology Laboratory of the US Department of Energy, University of Technology Sydney, McMaster University, Queens University, Purdue University, the University of Connecticut, Technical University of Denmark, the University of Toronto, Technische Universität Berlin, Texas A&M, the University of Pennsylvania, and many more. The key research themes covered include energy systems design, control systems, flexible operations, operational strategies, and systems analysis. The addressed areas of application include electric power generation, refrigeration cycles, natural gas liquefaction, shale gas treatment, concentrated solar power, waste-to-energy systems, micro-gas turbines, carbon dioxide capture systems, energy storage, petroleum refinery unit operations, Brayton cycles, to name but a few.

Standalone Renewable Energy Systems

Standalone Renewable Energy Systems
Author: Rodolfo Dufo-López
Publisher: MDPI
Total Pages: 188
Release: 2020-06-23
Genre: Technology & Engineering
ISBN: 3039361848

Download Standalone Renewable Energy Systems Book in PDF, Epub and Kindle

Standalone (off-grid) renewable energy systems supply electricity in places where there is no access to a standard electrical grid. These systems may include photovoltaic generators, wind turbines, hydro turbines or any other renewable electrical generator. Usually, this kind of system includes electricity storage (commonly lead-acid batteries, but also other types of storage can be used). In some cases, a backup generator (usually powered by fossil fuel, diesel or gasoline) is part of the hybrid system. The modelling of the components, the control of the system and the simulation of the performance of the whole system are necessary to evaluate the system technically and economically. The optimization of the sizing and/or the control is also an important task in this kind of system.

Hybrid Technologies for Power Generation

Hybrid Technologies for Power Generation
Author: Massimiliano Lo Faro
Publisher: Academic Press
Total Pages: 530
Release: 2021-10-30
Genre: Science
ISBN: 0128241861

Download Hybrid Technologies for Power Generation Book in PDF, Epub and Kindle

Hybrid Technologies for Power Generation addresses the topics related to hybrid technologies by coupling conventional thermal engines with novel technologies, including fuel cells, batteries, thermal storage and electrolysis, and reporting on the most recent advances concerning transport and stationary applications. Potential operating schemes of hybrid power generation systems are covered, highlighting possible combinations of technology and guideline selection according to the energy demands of end-users. Going beyond state-of-the-art technological developments for processes, devices and systems, this book discusses the environmental impact and existing hurdles of moving from a single device to new approaches for efficient energy generation, transfer, conversion, high-density storage and consumption. By describing the practical viability of novel devices coupled to conventional thermal devices, this book has a decisive impact in energy system research, supporting those in the energy research and engineering communities. Covers detailed thermodynamic requirements for multiple smart technologies included in hybrid systems (i.e., FC, electrolysers, supercapacitors, batteries, thermal storage, etc.) Features fundamental analysis and modeling to optimize the combination of smart technologies with traditional engines Details protocols for the analysis, operation and requirements of large-scale production

Energy Systems Modeling

Energy Systems Modeling
Author: Hooman Farzaneh
Publisher: Springer
Total Pages: 168
Release: 2019-04-09
Genre: Technology & Engineering
ISBN: 9811362211

Download Energy Systems Modeling Book in PDF, Epub and Kindle

This book serves as an introductory reference guide for those studying the application of models in energy systems. The book opens with a taxonomy of energy models and treatment of descriptive and analytical models, providing the reader with a foundation of the basic principles underlying the energy models and positioning these principles in the context of energy system studies. In turn, the book provides valuable insights into the varied applications of different energy models to answer complex questions, including those concerning specific aspects of energy policy measures dealing with issues of supply and demand. Case studies are provided in all of the chapters, offering real-world examples of how existing models fit the classification methods outlined here. The book’s remaining chapters address a broad range of principles and applications, taking the reader from the basic principles involved, to state-of-the-art energy production and consumption processes, using modeling and validation/illustration in case studies to do so. With its in-depth mathematical foundation, this book serves as a comprehensive collection of work on modeling energy systems and processes, taking inexperienced graduate students from the basics through to a high-level understanding of the modeling processes in question, while also providing professionals and academic researchers in the field of energy planning with an up-to-date reference guide covering the latest works.