Oscillators and Oscillator Systems

Oscillators and Oscillator Systems
Author: Jan R. Westra
Publisher: Springer Science & Business Media
Total Pages: 289
Release: 2013-04-17
Genre: Technology & Engineering
ISBN: 1475761171

Download Oscillators and Oscillator Systems Book in PDF, Epub and Kindle

In many electronic systems, such as telecommunication or measurement systems, oscillations play an essential role in the information processing. Each electronic system poses different requirements on these oscillations, depending on the type and performance level of that specific system. It is the designer's challenge to find the specifications for the desired oscillation and to implement an electronic circuit meeting these specifications. As the desired oscillations have to fulfill many requirements, the design process can become very complex. To find an optimal solution, the designer requires a design methodology that is preferably completely top-down oriented. To achieve such a methodology, it must be assured that each property of the system can be optimized independently of all other properties. Oscillators and Oscillator Systems: Classification, Analysis and Synthesis takes a systematic approach to the design of high-performance oscillators and oscillator systems. A fundamental classification of oscillators, based on their internal timing references, forms the basis of this approach. The classification enables the designer to make strategic design decisions at a high hierarchical level of the design process. Techniques, derived from the systematic approach, are supplied to the designer to enable him or her to bring the performance of the system as close as possible to the fundamental limits. Oscillators and Oscillator Systems: Classification, Analysis and Synthesis is an excellent reference for researchers and circuit designers, and may be used as a text for advanced courses on the topic.

Oscillators and Oscillator Systems

Oscillators and Oscillator Systems
Author: Jan R. Westra
Publisher: Springer
Total Pages: 282
Release: 2013-03-01
Genre: Technology & Engineering
ISBN: 9781475761184

Download Oscillators and Oscillator Systems Book in PDF, Epub and Kindle

In many electronic systems, such as telecommunication or measurement systems, oscillations play an essential role in the information processing. Each electronic system poses different requirements on these oscillations, depending on the type and performance level of that specific system. It is the designer's challenge to find the specifications for the desired oscillation and to implement an electronic circuit meeting these specifications. As the desired oscillations have to fulfill many requirements, the design process can become very complex. To find an optimal solution, the designer requires a design methodology that is preferably completely top-down oriented. To achieve such a methodology, it must be assured that each property of the system can be optimized independently of all other properties. Oscillators and Oscillator Systems: Classification, Analysis and Synthesis takes a systematic approach to the design of high-performance oscillators and oscillator systems. A fundamental classification of oscillators, based on their internal timing references, forms the basis of this approach. The classification enables the designer to make strategic design decisions at a high hierarchical level of the design process. Techniques, derived from the systematic approach, are supplied to the designer to enable him or her to bring the performance of the system as close as possible to the fundamental limits. Oscillators and Oscillator Systems: Classification, Analysis and Synthesis is an excellent reference for researchers and circuit designers, and may be used as a text for advanced courses on the topic.

Low-Power Crystal and MEMS Oscillators

Low-Power Crystal and MEMS Oscillators
Author: Eric Vittoz
Publisher: Springer Science & Business Media
Total Pages: 219
Release: 2010-08-03
Genre: Technology & Engineering
ISBN: 9048193958

Download Low-Power Crystal and MEMS Oscillators Book in PDF, Epub and Kindle

Electronic oscillators using an electromechanical device as a frequency reference are irreplaceable components of systems-on-chip for time-keeping, carrier frequency generation and digital clock generation. With their excellent frequency stability and very large quality factor Q, quartz crystal resonators have been the dominant solution for more than 70 years. But new possibilities are now offered by micro-electro-mechanical (MEM) resonators, that have a qualitatively identical equivalent electrical circuit. Low-Power Crystal and MEMS Oscillators concentrates on the analysis and design of the most important schemes of integrated oscillator circuits. It explains how these circuits can be optimized by best exploiting the very high Q of the resonator to achieve the minimum power consumption compatible with the requirements on frequency stability and phase noise. The author has 40 years of experience in designing very low-power, high-performance quartz oscillators for watches and other battery operated systems and has accumulated most of the material during this period. Some additional original material related to phase noise has been added. The explanations are mainly supported by analytical developments, whereas computer simulation is limited to numerical examples. The main part is dedicated to the most important Pierce circuit, with a full design procedure illustrated by examples. Symmetrical circuits that became popular for modern telecommunication systems are analyzed in a last chapter.

Design of High-Performance CMOS Voltage-Controlled Oscillators

Design of High-Performance CMOS Voltage-Controlled Oscillators
Author: Liang Dai
Publisher: Springer Science & Business Media
Total Pages: 186
Release: 2003
Genre: Computers
ISBN: 9781402072383

Download Design of High-Performance CMOS Voltage-Controlled Oscillators Book in PDF, Epub and Kindle

Design of High-Performance CMOS Voltage-Controlled Oscillators presents a phase noise modeling framework for CMOS ring oscillators. The analysis considers both linear and nonlinear operation. It indicates that fast rail-to-rail switching has to be achieved to minimize phase noise. Additionally, in conventional design the flicker noise in the bias circuit can potentially dominate the phase noise at low offset frequencies. Therefore, for narrow bandwidth PLLs, noise up conversion for the bias circuits should be minimized. We define the effective Q factor (Qeff) for ring oscillators and predict its increase for CMOS processes with smaller feature sizes. Our phase noise analysis is validated via simulation and measurement results. The digital switching noise coupled through the power supply and substrate is usually the dominant source of clock jitter. Improving the supply and substrate noise immunity of a PLL is a challenging job in hostile environments such as a microprocessor chip where millions of digital gates are present.

The Designer's Guide to High-Purity Oscillators

The Designer's Guide to High-Purity Oscillators
Author: Emad Eldin Hegazi
Publisher: Springer Science & Business Media
Total Pages: 212
Release: 2006-07-18
Genre: Technology & Engineering
ISBN: 0387233652

Download The Designer's Guide to High-Purity Oscillators Book in PDF, Epub and Kindle

try to predict it using mathematical expressions. His heuristic model without mathematical proof is almost universally accepted. However, it entails a c- cuit specific noise factor that is not known a priori and so is not predictive. In this work, we attempt to address the topic of oscillator design from a diff- ent perspective. By introducing a new paradigm that accurately captures the subtleties of phase noise we try to answer the question: 'why do oscillators behave in a particular way?' and 'what can be done to build an optimum design?' It is also hoped that the paradigm is useful in other areas of circuit design such as frequency synthesis and clock recovery. In Chapter 1, a general introduction and motivation to the subject is presented. Chapter 2 summarizes the fundamentals of phase noise and timing jitter and discusses earlier works on oscillator's phase noise analysis. Chapter 3 and Chapter 4 analyze the physical mechanisms behind phase noise generation in current-biased and Colpitts oscillators. Chapter 5 discusses design trade-offs and new techniques in LC oscillator design that allows optimal design. Chapter 6 and Chapter 7 discuss a topic that is typically ignored in oscillator design. That is flicker noise in LC oscillators. Finally, Chapter 8 is dedicated to the complete analysis of the role of varactors both in tuning and AM-FM noise conversion.

Oscillator Circuits

Oscillator Circuits
Author: Yoshifumi Nishio
Publisher: IET
Total Pages: 337
Release: 2016-11-10
Genre: Technology & Engineering
ISBN: 1785610570

Download Oscillator Circuits Book in PDF, Epub and Kindle

This book fills the need for a comprehensive volume on the most recent research on oscillator circuit design, analysis and application. It highlights developments in the analysis of synchronization and wave phenomena, new analytical and design methods and their application, and novel engineering applications of oscillator circuits. Topics covered include various oscillatory circuits and their synchronization; bifurcation analysis of oscillatory circuits; synchronization phenomena of hysteresis oscillators; recent research on memristor based relaxation oscillators; theory and design of fractional-order oscillators; piecewise-constant oscillators and their applications; multimode oscillations in hard oscillators; wave propagation of phase difference in coupled oscillator arrays; coupled oscillator networks with frustration; fundamental operation and design of high-frequency high-efficiency tuned power oscillator; graph comparison and synchronization in complex networks; experimental studies on networks of coupled chaotic oscillators; ring oscillators and applications in random bit generation; attacking on-chip oscillators. Oscillator Circuits: Frontiers in Design, Analysis and Applications is essential reading for researchers, students and designers working in circuit theory, analysis, design and application.

Understanding Quartz Crystals and Oscillators

Understanding Quartz Crystals and Oscillators
Author: Ramon M. Cerda
Publisher: Artech House
Total Pages: 325
Release: 2014-05-01
Genre: Technology & Engineering
ISBN: 1608071189

Download Understanding Quartz Crystals and Oscillators Book in PDF, Epub and Kindle

Quartz, unique in its chemical, electrical, mechanical, and thermal properties, is used as a frequency control element in applications where stability of frequency is an absolute necessity. Without crystal controlled transmission, radio and television would not be possible in their present form. The quartz crystals allow the individual channels in communication systems to be spaced closer together to make better use of one of most precious resources -- wireless bandwidth. This book describes the characteristics of the art of crystal oscillator design, including how to specify and select crystal oscillators. While presenting various varieties of crystal oscillators, this resource also provides you with useful MathCad and Genesys simulations.

The Design of Low Noise Oscillators

The Design of Low Noise Oscillators
Author: Ali Hajimiri
Publisher: Springer Science & Business Media
Total Pages: 214
Release: 2007-05-08
Genre: Technology & Engineering
ISBN: 0306481995

Download The Design of Low Noise Oscillators Book in PDF, Epub and Kindle

It is hardly a revelation to note that wireless and mobile communications have grown tremendously during the last few years. This growth has placed stringent requi- ments on channel spacing and, by implication, on the phase noise of oscillators. C- pounding the challenge has been a recent drive toward implementations of transceivers in CMOS, whose inferior 1/f noise performance has usually been thought to disqualify it from use in all but the lowest-performance oscillators. Low noise oscillators are also highly desired in the digital world, of course. The c- tinued drive toward higher clock frequencies translates into a demand for ev- decreasing jitter. Clearly, there is a need for a deep understanding of the fundamental mechanisms g- erning the process by which device, substrate, and supply noise turn into jitter and phase noise. Existing models generally offer only qualitative insights, however, and it has not always been clear why they are not quantitatively correct.

RF and Microwave Transistor Oscillator Design

RF and Microwave Transistor Oscillator Design
Author: Andrei Grebennikov
Publisher: John Wiley & Sons
Total Pages: 458
Release: 2007-04-30
Genre: Technology & Engineering
ISBN: 9780470512081

Download RF and Microwave Transistor Oscillator Design Book in PDF, Epub and Kindle

The increase of consumer electronics and communications applications using Radio Frequency (RF) and microwave circuits has implications for oscillator design. Applications working at higher frequencies and using novel technologies have led to a demand for more robust circuits with higher performance and functionality, but decreased costs, size and power consumption. As a result, there is also a need for more efficient oscillators. This book presents up to date information on all aspects of oscillator design, enabling a selection of the best oscillator topologies with optimized noise reduction and electrical performance. RF and Microwave Transistor Oscillator Design covers: analyses of non-linear circuit design methods including spectral-domain analysis, time-domain analysis and the quasilinear method; information on noise in oscillators including chapters on varactor and oscillator frequency tuning, CMOS voltage-controlled oscillators and wideband voltage-controlled oscillators; information on the stability of oscillations, with discussions on the stability of multi-resonant circuits and the phase plane method; optimized design and circuit techniques, beginning with the empirical and analytic design approaches, moving on to the high-efficiency design technique; general operation and design principles of oscillators, including a section on the historical aspects of oscillator configurations. A valuable reference for practising RF and Microwave designers and engineers, RF and Microwave Transistor Oscillator Design is also useful for lecturers, advanced students and research and design (R&D) personnel.