Geocomplexity and the Physics of Earthquakes

Geocomplexity and the Physics of Earthquakes
Author: John Rundle
Publisher: American Geophysical Union
Total Pages: 288
Release: 2000-01-10
Genre: Nature
ISBN: 0875909787

Download Geocomplexity and the Physics of Earthquakes Book in PDF, Epub and Kindle

Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 120. Earthquakes in urban centers are capable of causing enormous damage. The January 16, 1995 Kobe, Japan earthquake was only a magnitude 6.9 event and yet produced an estimated $200 billion loss. Despite an active earthquake prediction program in Japan, this event was a complete surprise. Similar scenarios are possible in Los Angeles, San Francisco, Seattle, and other urban centers around the Pacific plate boundary. The development of forecast or prediction methodologies for these great damaging earthquakes has been complicated by the fact that the largest events repeat at irregular intervals of hundreds to thousands of years, resulting in a limited historical record that has frustrated phenomenological studies. The papers in this book describe an emerging alternative approach, which is based on a new understanding of earthquake physics arising from the construction and analysis of numerical simulations. With these numerical simulations, earthquake physics now can be investigated in numerical laboratories. Simulation data from numerical experiments can be used to develop theoretical understanding that can be subsequently applied to observed data. These methods have been enabled by the information technology revolution, in which fundamental advances in computing and communications are placing vast computational resources at our disposal.

Living on an Active Earth

Living on an Active Earth
Author: National Research Council
Publisher: National Academies Press
Total Pages: 431
Release: 2003-09-22
Genre: Science
ISBN: 0309065623

Download Living on an Active Earth Book in PDF, Epub and Kindle

The destructive force of earthquakes has stimulated human inquiry since ancient times, yet the scientific study of earthquakes is a surprisingly recent endeavor. Instrumental recordings of earthquakes were not made until the second half of the 19th century, and the primary mechanism for generating seismic waves was not identified until the beginning of the 20th century. From this recent start, a range of laboratory, field, and theoretical investigations have developed into a vigorous new discipline: the science of earthquakes. As a basic science, it provides a comprehensive understanding of earthquake behavior and related phenomena in the Earth and other terrestrial planets. As an applied science, it provides a knowledge base of great practical value for a global society whose infrastructure is built on the Earth's active crust. This book describes the growth and origins of earthquake science and identifies research and data collection efforts that will strengthen the scientific and social contributions of this exciting new discipline.

An Introduction to Seismology, Earthquakes, and Earth Structure

An Introduction to Seismology, Earthquakes, and Earth Structure
Author: Seth Stein
Publisher: John Wiley & Sons
Total Pages: 512
Release: 2013-05-30
Genre: Science
ISBN: 1118687450

Download An Introduction to Seismology, Earthquakes, and Earth Structure Book in PDF, Epub and Kindle

An Introduction to Seismology, Earthquakes and Earth Structures is an introduction to seismology and its role in the earth sciences, and is written for advanced undergraduate and beginning graduate students. The fundamentals of seismic wave propagation are developed using a physical approach and then applied to show how refraction, reflection, and teleseismic techniques are used to study the structure and thus the composition and evolution of the earth. The book shows how seismic waves are used to study earthquakes and are integrated with other data to investigate the plate tectonic processes that cause earthquakes. Figures, examples, problems, and computer exercises teach students about seismology in a creative and intuitive manner. Necessary mathematical tools including vector and tensor analysis, matrix algebra, Fourier analysis, statistics of errors, signal processing, and data inversion are introduced with many relevant examples. The text also addresses the fundamentals of seismometry and applications of seismology to societal issues. Special attention is paid to help students visualize connections between different topics and view seismology as an integrated science. An Introduction to Seismology, Earthquakes, and Earth Structure gives an excellent overview for students of geophysics and tectonics, and provides a strong foundation for further studies in seismology. Multidisciplinary examples throughout the text - catering to students in varied disciplines (geology, mineralogy, petrology, physics, etc.). Most up to date book on the market - includes recent seismic events such as the 1999 Earthquakes in Turkey, Greece, and Taiwan). Chapter outlines - each chapter begins with an outline and a list of learning objectives to help students focus and study. Essential math review - an entire section reviews the essential math needed to understand seismology. This can be covered in class or left to students to review as needed. End of chapter problem sets - homework problems that cover the material presented in the chapter. Solutions to all odd numbered problem sets are listed in the back so that students can track their progress. Extensive References - classic references and more current references are listed at the end of each chapter. A set of instructor's resources containing downloadable versions of all the figures in the book, errata and answers to homework problems is available at: http://levee.wustl.edu/seismology/book/. Also available on this website are PowerPoint lecture slides corresponding to the first 5 chapters of the book.

The Omega-Theory

The Omega-Theory
Author: Jure Žalohar
Publisher: Elsevier
Total Pages: 572
Release: 2018-05-10
Genre: Science
ISBN: 0128145811

Download The Omega-Theory Book in PDF, Epub and Kindle

The Omega-Theory: A New Physics of Earthquakes, Second Edition offers a unifying, mathematical framework to describe and answer the most pressing and unexamined dilemmas of earthquake sequences. Those in the fields of seismology and geology are currently faced with a vast and complex mathematical structure, involving many new, natural laws and theorems. This book interprets this structure as a new physical theory and paradigm, helping users understand the tectonic and seismic processes within the Earth. As such, it is an essential resource for future researchers in the fields of structural geology, physics of the Earth, and seismology. In the last decades, generations of seismologists, geophysicists, and geologists have accumulated enough knowledge and information to allow for the reformulation and solution of this essential problem. Hence, this book provides a great resource for researchers and professionals. Brings together twenty years of research in the field of geophysics and attacks the problem within the framework of the Cosserat continuum theory Heavily tested on tens of natural examples and numerical tests Includes 350 color figures and graphs Spans across many fields of theoretical physics and geology, such as plate tectonics, synchronization of chaotic systems, solitons and fractals, mathematical set theory, and quantum mechanics

Seismology and Structure of the Earth

Seismology and Structure of the Earth
Author: Barbara Romanowicz
Publisher: Elsevier
Total Pages: 873
Release: 2010-04-20
Genre: Science
ISBN: 0444535756

Download Seismology and Structure of the Earth Book in PDF, Epub and Kindle

Treatise on Geophysics: Seismology and Structure of the Earth, Volume 1, provides a comprehensive review of the state of knowledge on the Earths structure and earthquakes. It addresses various aspects of structural seismology and its applications to other fields of Earth sciences. The book is organized into four parts. The first part principally covers theoretical developments and seismic data analysis techniques from the end of the nineteenth century until the present, with the main emphasis on the development of instrumentation and its deployment. The second part reviews the status of knowledge on the structure of the Earths shallow layers, starting with a global review of the Earth's crustal structure. The third part focuses on the Earth's deep structure, divided into its main units: the upper mantle, the transition zone and upper-mantle discontinuities, the D region at the base of the mantle, and the Earth's core. The fourth part comprises two chapters which discuss constraints on Earth structure from fields other than seismology: mineral physics and geodynamics. Self-contained volume starts with an overview of the subject then explores each topic with in depth detail Extensive reference lists and cross references with other volumes to facilitate further research Full-color figures and tables support the text and aid in understanding Content suited for both the expert and non-expert

Computational Earthquake Physics: Simulations, Analysis and Infrastructure, Part I

Computational Earthquake Physics: Simulations, Analysis and Infrastructure, Part I
Author: Xiang-chu Yin
Publisher: Springer Science & Business Media
Total Pages: 308
Release: 2007-12-03
Genre: Science
ISBN: 3764379928

Download Computational Earthquake Physics: Simulations, Analysis and Infrastructure, Part I Book in PDF, Epub and Kindle

The first of a two-part work, this volume focuses on microscopic simulation, scaling physics, dynamic rapture and wave propagation, earthquake generation, cycle and seismic pattern. Topics covered range from numerical and theoretical studies of crack propagation, developments in finite difference methods for modeling faults, long time scale simulation of interacting fault systems, and modeling of crustal deformation through to mantle convection.

Computational Earthquake Physics: Simulations, Analysis and Infrastructure, Part II

Computational Earthquake Physics: Simulations, Analysis and Infrastructure, Part II
Author: Xiang-chu Yin
Publisher: Springer Science & Business Media
Total Pages: 330
Release: 2007-10-24
Genre: Science
ISBN: 3764381310

Download Computational Earthquake Physics: Simulations, Analysis and Infrastructure, Part II Book in PDF, Epub and Kindle

This second part of a two-volume work contains 22 research articles on various aspects of computational earthquake physics. Coverage includes the promising earthquake forecasting model LURR (Load-Unload Response Ratio); pattern informatics and phase dynamics and their applications; computational algorithms, including continuum damage models and visualization and analysis of geophysical datasets; and assimilation of data.

The Mechanics of Earthquakes and Faulting

The Mechanics of Earthquakes and Faulting
Author: Christopher H. Scholz
Publisher: Cambridge University Press
Total Pages: 508
Release: 2002-05-02
Genre: Nature
ISBN: 9780521655408

Download The Mechanics of Earthquakes and Faulting Book in PDF, Epub and Kindle

Our understanding of earthquakes and faulting processes has developed significantly since publication of the successful first edition of this book in 1990. This revised edition, first published in 2002, was therefore thoroughly up-dated whilst maintaining and developing the two major themes of the first edition. The first of these themes is the connection between fault and earthquake mechanics, including fault scaling laws, the nature of fault populations, and how these result from the processes of fault growth and interaction. The second major theme is the central role of the rate-state friction laws in earthquake mechanics, which provide a unifying framework within which a wide range of faulting phenomena can be interpreted. With the inclusion of two chapters explaining brittle fracture and rock friction from first principles, this book is written at a level which will appeal to graduate students and research scientists in the fields of seismology, physics, geology, geodesy and rock mechanics.

Earthquake Science and Seismic Risk Reduction

Earthquake Science and Seismic Risk Reduction
Author: F. Mulargia
Publisher: Springer Science & Business Media
Total Pages: 366
Release: 2012-12-06
Genre: Science
ISBN: 9401000417

Download Earthquake Science and Seismic Risk Reduction Book in PDF, Epub and Kindle

What is the first thing that ordinary people, for whom journalists are the proxy, ask when they meet a seismologist? It is certainly nothing technical like "What was the stress drop of the last earthquake in the Imperial Valley?" It is a sim ple question, which nevertheless summarizes the real demands that society has for seismology. This question is "Can you predict earthquakes?" Regrettably, notwithstanding the feeling of omnipotence induced by modem technology, the answer at present is the very opposite of "Yes, of course". The primary motivation for the question "Can you predict earthquakes?" is practical. No other natural phenomenon has the tremendous destructive power of a large earthquake, a power which is rivaled only by a large scale war. An earth quake in a highly industrialized region is capable of adversely affecting the econ omy of the whole world for several years. But another motivation is cognitive. The aim of science is 'understanding' nature, and one of the best ways to show that we understand a phenomenon is the ability to make accurate predictions.