Fundamentals of Heat Engines

Fundamentals of Heat Engines
Author: Jamil Ghojel
Publisher: John Wiley & Sons
Total Pages: 534
Release: 2020-04-20
Genre: Technology & Engineering
ISBN: 1119548764

Download Fundamentals of Heat Engines Book in PDF, Epub and Kindle

Summarizes the analysis and design of today’s gas heat engine cycles This book offers readers comprehensive coverage of heat engine cycles. From ideal (theoretical) cycles to practical cycles and real cycles, it gradually increases in degree of complexity so that newcomers can learn and advance at a logical pace, and so instructors can tailor their courses toward each class level. To facilitate the transition from one type of cycle to another, it offers readers additional material covering fundamental engineering science principles in mechanics, fluid mechanics, thermodynamics, and thermochemistry. Fundamentals of Heat Engines: Reciprocating and Gas Turbine Internal-Combustion Engines begins with a review of some fundamental principles of engineering science, before covering a wide range of topics on thermochemistry. It next discusses theoretical aspects of the reciprocating piston engine, starting with simple air-standard cycles, followed by theoretical cycles of forced induction engines, and ending with more realistic cycles that can be used to predict engine performance as a first approximation. Lastly, the book looks at gas turbines and covers cycles with gradually increasing complexity to end with realistic engine design-point and off-design calculations methods. Covers two main heat engines in one single reference Teaches heat engine fundamentals as well as advanced topics Includes comprehensive thermodynamic and thermochemistry data Offers customizable content to suit beginner or advanced undergraduate courses and entry-level postgraduate studies in automotive, mechanical, and aerospace degrees Provides representative problems at the end of most chapters, along with a detailed example of piston-engine design-point calculations Features case studies of design-point calculations of gas turbine engines in two chapters Fundamentals of Heat Engines can be adopted for mechanical, aerospace, and automotive engineering courses at different levels and will also benefit engineering professionals in those fields and beyond.

Gas Turbine Heat Transfer and Cooling Technology, Second Edition

Gas Turbine Heat Transfer and Cooling Technology, Second Edition
Author: Je-Chin Han
Publisher: CRC Press
Total Pages: 892
Release: 2012-11-27
Genre: Science
ISBN: 1439855684

Download Gas Turbine Heat Transfer and Cooling Technology, Second Edition Book in PDF, Epub and Kindle

A comprehensive reference for engineers and researchers, Gas Turbine Heat Transfer and Cooling Technology, Second Edition has been completely revised and updated to reflect advances in the field made during the past ten years. The second edition retains the format that made the first edition so popular and adds new information mainly based on selected published papers in the open literature. See What’s New in the Second Edition: State-of-the-art cooling technologies such as advanced turbine blade film cooling and internal cooling Modern experimental methods for gas turbine heat transfer and cooling research Advanced computational models for gas turbine heat transfer and cooling performance predictions Suggestions for future research in this critical technology The book discusses the need for turbine cooling, gas turbine heat-transfer problems, and cooling methodology and covers turbine rotor and stator heat-transfer issues, including endwall and blade tip regions under engine conditions, as well as under simulated engine conditions. It then examines turbine rotor and stator blade film cooling and discusses the unsteady high free-stream turbulence effect on simulated cascade airfoils. From here, the book explores impingement cooling, rib-turbulent cooling, pin-fin cooling, and compound and new cooling techniques. It also highlights the effect of rotation on rotor coolant passage heat transfer. Coverage of experimental methods includes heat-transfer and mass-transfer techniques, liquid crystal thermography, optical techniques, as well as flow and thermal measurement techniques. The book concludes with discussions of governing equations and turbulence models and their applications for predicting turbine blade heat transfer and film cooling, and turbine blade internal cooling.

Combustion and Heat Transfer in Gas Turbine Systems

Combustion and Heat Transfer in Gas Turbine Systems
Author: E. R. Norster
Publisher: Elsevier
Total Pages: 417
Release: 2013-10-22
Genre: Technology & Engineering
ISBN: 1483151794

Download Combustion and Heat Transfer in Gas Turbine Systems Book in PDF, Epub and Kindle

Combustion and Heat Transfer in Gas Turbine Systems is a compilation of papers from the Proceedings of an International Propulsion Symposium held at the College of Aeronautics, Cranfield in April 1969. This compilation deals with research done by academic and scientific institutions and of industrial organizations, with some research papers covering atomization, fuels, and high-temperature materials. One paper describes the combustion system of the Concorde engine used in commercial flights, temperature of metal parts, and some design modifications to increase the mechanical life of the combustion system. Another paper discusses the evolution of the RB 162 combustion system that is used in the vertical takeoff and landing aircrafts. The RB 162 has many design features of the earlier single reversal chamber and differs in only one or two points. The book then notes the necessity of a plenum chamber burning to further development of supersonic engines and flight. One paper also proposes an alternative theory to the traditional ignition theory of altitude relighting such as those developed by Lewis and von Elbe. Another paper reposts on some observations made of the atomizing characteristics of air-blast atomizers and proposes simple changes to improve the performance of the atomizer by prefilming and allowing air to both sides of the fuel. This compilation will prove very helpful for aeronautical engineers, aviation designers, physicists, students of engineering, and readers who are interested in the design and development of jet engines and supersonic aircrafts.

Heat Transfer in Gas Turbines

Heat Transfer in Gas Turbines
Author: Bengt Sundén
Publisher: Witpress
Total Pages: 544
Release: 2001
Genre: Medical
ISBN:

Download Heat Transfer in Gas Turbines Book in PDF, Epub and Kindle

This title presents and reflects current active research on various heat transfer topics and related phenomena in gas turbine systems. It begins with a general introduction to gas turbine heat transfer, before moving on to specific areas.

Heat Transfer Basics

Heat Transfer Basics
Author: Jamil Ghojel
Publisher: John Wiley & Sons
Total Pages: 565
Release: 2023-12-27
Genre: Technology & Engineering
ISBN: 1119840260

Download Heat Transfer Basics Book in PDF, Epub and Kindle

HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiency Transient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problems Free and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.