Frameworks for Improving Multi-Index Drought Monitoring Using Remote Sensing Observations

Frameworks for Improving Multi-Index Drought Monitoring Using Remote Sensing Observations
Author: Alireza Farahmand
Publisher:
Total Pages: 131
Release: 2016
Genre:
ISBN: 9781339563824

Download Frameworks for Improving Multi-Index Drought Monitoring Using Remote Sensing Observations Book in PDF, Epub and Kindle

The overarching goal of this dissertation is to improve current capabilities in drought monitoring using space-based observations, with a focus on integrating remotely sensed data products that are not commonly being used for drought monitoring. The first chapter of this dissertation, surveys current and emerging drought monitoring approaches using remotely-sensed observations from climatological and ecosystem perspectives. Current and future satellite missions offer opportunities to develop composite and multi-sensor (or multi-index) drought assessment models. While there are immense opportunities, there are major challenges including data continuity, unquantified uncertainty, sensor changes, and community acceptability. One of the major limitations of many of the currently available satellite observations is their short length of record. However, they still provide valuable information about relevant hydrologic and ecological processes linked to this natural hazard. Therefore, there is a need for models and algorithms that combine multiple data sets and/or assimilate satellite observations into model simulations to generate long-term climate data records. To address this gap, Chapter 2 introduces Standardized Drought Analysis Toolbox (SDAT), which includes a generalized framework for deriving nonparametric univariate and multivariate standardized drought indices. Current indicators suffer from deficiencies including some prior distributional assumption, temporal inconsistency, and statistical incomparability. Most drought indicators rely on a representative parametric probability distribution function that fits the data. However, a parametric distribution function may not fit the data, especially in continental/global scale studies. Particularly, when the sample size is relatively small as in the case of many satellite precipitation products. SDAT is based on a nonparametric framework that can be applied to different climatic variables including precipitation, soil moisture and relative humidity, without having to assume representative parametric distributions. The most attractive feature of the framework is that it leads to statistically consistent drought indicators based on different variables. We show that using SDAT with satellite observation leads to more reliable drought information, compared to the commonly used parametric methods.We argue that satellite observations not currently used for operational drought monitoring, such as near-surface air relative humidity data from the Atmospheric Infrared Sounder (AIRS) mission, provide opportunities to improve early drought warning. In the third chapter of this dissertation, we outline a new drought monitoring framework for early drought onset detection using AIRS relative humidity data. The early warning and onset detection of drought is of particular importance for effective agriculture and water resource management. Previous studies show that the Standard Precipitation Index (SPI), a measure of precipitation deficit, detects drought onset earlier than other indicators. Here satellite-based near surface air relative humidity data can further improve drought onset detection and early warning. This chapter introduces the Standardized Relative Humidity Index (SRHI) based on the NASA's AIRS observations. SRHI relies on SDAT's nonparametric framework, introduced in Chapter 2. The results indicate that the SRHI typically detects the drought onset earlier than SPI. While the AIRS mission was not originally designed for drought monitoring, its relative humidity data offers a new and unique avenue for drought monitoring and early warning. Early warning aspects of SRHI may have merit for integration into current drought monitoring systems.One of the research opportunities identified in Chapter 1 is using current (and future) satellite missions to develop composite and multi-indicator drought models. In Chapter 4, we outline a framework for assessing impacts of droughts on forest health using a multi-sensor approach. This framework relies on the relationship between climate conditions (e.g., temperature, precipitation, relative humidity, Vapor Pressure Deficit) and forest health based on greenness of vegetation. Wildfires, tree mortality and forest productivity increase during drought periods. Using the proposed multi-index approach, Chapter 4 aims to investigate the effects of recent summer, dry-season and winter droughts on the forest health in western United States. We use Vapor Pressure Deficit (VPD) as an indicator that combines temperature and relative humidity for forest stress assessment. Normalized Difference Vegetation Index (NDVI) is commonly used for assessing vegetation health. During summer and growing season, VPD values are generally high. The results show that the VPD and NDVI provide consistent information on forest health. In addition to VPD, we use conditional probability of NDVI in high temperature and low relative humidity percentiles over the summer and the growing season. We show that combining temperature and relative humidity using a conditional probability approach offers multi-sensor information on forest condition. During winter, on the other hand, VPD and temperature is relatively lower. NDVI distributions in winter were found to be more associated with precipitation as opposed to relative humidity and temperature. We believe the a joint indicator based on temperature and relative humidity can be considered as a link between climate condition and actual impact on the ecosystem. (Abstract shortened by UMI.)

Remote Sensing of Drought

Remote Sensing of Drought
Author: Brian D. Wardlow
Publisher: CRC Press
Total Pages: 487
Release: 2012-04-24
Genre: Science
ISBN: 1439835578

Download Remote Sensing of Drought Book in PDF, Epub and Kindle

Remote Sensing of Drought: Innovative Monitoring Approaches presents emerging remote sensing-based tools and techniques that can be applied to operational drought monitoring and early warning around the world. The first book to focus on remote sensing and drought monitoring, it brings together a wealth of information that has been scattered throughout the literature and across many disciplines. Featuring contributions by leading scientists, it assembles a cross-section of globally applicable techniques that are currently operational or have potential to be operational in the near future. The book explores a range of applications for monitoring four critical components of the hydrological cycle related to drought: vegetation health, evapotranspiration, soil moisture and groundwater, and precipitation. These applications use remotely sensed optical, thermal, microwave, radar, and gravity data from instruments such as AMSR-E, GOES, GRACE, MERIS, MODIS, and Landsat and implement several advanced modeling and data assimilation techniques. Examples show how to integrate this information into routine drought products. The book also examines the role of satellite remote sensing within traditional drought monitoring, as well as current challenges and future prospects. Improving drought monitoring is becoming increasingly important in addressing a wide range of societal issues, from food security and water scarcity to human health, ecosystem services, and energy production. This unique book surveys innovative remote sensing approaches to provide you with new perspectives on large-area drought monitoring and early warning.

Global Drought and Flood

Global Drought and Flood
Author: Huan Wu
Publisher: John Wiley & Sons
Total Pages: 352
Release: 2021-08-10
Genre: Science
ISBN: 1119427215

Download Global Drought and Flood Book in PDF, Epub and Kindle

Recent advances in the modeling and remote sensing of droughts and floods Droughts and floods are causing increasing damage worldwide, often with devastating short- and long-term impacts on human society. Forecasting when they will occur, monitoring them as they develop, and learning from the past to improve disaster management is vital. Global Drought and Flood: Observation, Modeling, and Prediction presents recent advances in the modeling and remote sensing of droughts and floods. It also describes the techniques and products currently available and how they are being used in practice. Volume highlights include: Remote sensing approaches for mapping droughts and floods Physical and statistical models for monitoring and forecasting hydrologic hazards Features of various drought and flood systems and products Use by governments, humanitarian, and development stakeholders in recent disaster cases Improving the collaboration between hazard information provision and end users The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

The Use of Remote Sensing Data for Drought Assessment and Monitoring in Southwest Asia

The Use of Remote Sensing Data for Drought Assessment and Monitoring in Southwest Asia
Author: Prasad Srinivasa Thenkabail
Publisher: IWMI
Total Pages: 34
Release: 2004
Genre: Droughts
ISBN: 9290905751

Download The Use of Remote Sensing Data for Drought Assessment and Monitoring in Southwest Asia Book in PDF, Epub and Kindle

This report describes the development of the near real-time drought monitoring and reporting system for the region, which currently includes Afghanistan, Pakistan and western parts of India. The system is based on drought-related indices derived from high-resolution remote-sensing data (MODIS). The unique feature of the study is the development of regression relationships between drought-related indices obtained from MODIS and AVHRR data, which have different pixel-resolution and optical characteristics. The goal is to make the system available, via Internet, to all stakeholders in the region.

Hydrological Drought

Hydrological Drought
Author: Lena M. Tallaksen
Publisher: Gulf Professional Publishing
Total Pages: 634
Release: 2004
Genre: Mathematics
ISBN: 9780444516886

Download Hydrological Drought Book in PDF, Epub and Kindle

The majority of the examples are taken from regions where the rivers run most of the year.

Monitoring and Predicting Agricultural Drought

Monitoring and Predicting Agricultural Drought
Author: Vijendra K. Boken
Publisher: Oxford University Press
Total Pages: 495
Release: 2005-04-14
Genre: Business & Economics
ISBN: 019516234X

Download Monitoring and Predicting Agricultural Drought Book in PDF, Epub and Kindle

Basic concepts and drought analysis. Remote sensing. NOAA/AVHRR satellite data-based indices for monitoring agricultural droughts. The Americas. Europe, Russia, and the near east. Asia and Australia. International efforts and climate change.

Remote Sensing of Hydrological Extremes

Remote Sensing of Hydrological Extremes
Author: Venkat Lakshmi
Publisher: Springer
Total Pages: 256
Release: 2016-11-03
Genre: Technology & Engineering
ISBN: 3319437445

Download Remote Sensing of Hydrological Extremes Book in PDF, Epub and Kindle

This volume provides in-depth coverage of the latest in remote sensing of hydrological extremes: both floods and droughts. The book is divided into two distinct sections – floods and droughts – and offers a variety of techniques for monitoring each. With rapid advances in computer modelling and observing systems, floods and droughts are studied with greater precision today than ever before. Land surface models, especially over the entire Continental United States, can map the hydrological cycle at kilometre and sub-kilometre scales. In the case of smaller areas there is even higher spatial resolution and the only limiting factor is the resolution of input data. In-situ sensors are automated and the data is directly relayed to the world wide web for many hydrological variables such as precipitation, soil moisture, surface temperature and heat fluxes. In addition, satellite remote sensing has advanced to providing twice a day repeat observations at kilometre to ten-kilometre spatial scales. We are at a critical juncture in the study of hydrological extremes, and the GPM and SMAP missions as well as the MODIS and GRACE sensors give us more tools and data than were ever available before. A global variety of chapter authors provides wide-ranging perspectives and case studies that will make this book an indispensable resource for researchers, engineers, and even emergency management and insurance professionals who study and/or manage hydrological extremes.

Drought Assessment

Drought Assessment
Author: R. Nagarajan
Publisher: Springer Science & Business Media
Total Pages: 439
Release: 2010-09-08
Genre: Nature
ISBN: 9048125006

Download Drought Assessment Book in PDF, Epub and Kindle

Information-based decision-making during drought, often brings out some of the excellent practices that are prevalent in society / individuals. This book is designed to provide information on the drought process, meteorological, hydrological, agriculture, socio-economic aspects and available technologies such as satellite remote sensing data analysis and Geographical Information system for assessment. Assessment procedures utilising the various parameters of importance from various sources for micro level management that would enhance the effectiveness of management practice are dealt in detail. Resource availability and affected group determine the relief assistance for the present event and information that would help them in their realisation and preparedness for the forthcoming years by select countries is highlighted. This would help in the formulation of schemes for event mitigation and area development plans. The readers would gain complete knowledge on drought. This book is expected to act as a guide in preparing people as effective natural resource utilizationist under drought situations.

Drought Monitoring with Remote Sensing Based Land Surface Phenology Applications and Validation

Drought Monitoring with Remote Sensing Based Land Surface Phenology Applications and Validation
Author: Mohamed Abd salam Mohamdy El Vilaly
Publisher:
Total Pages: 352
Release: 2013
Genre:
ISBN:

Download Drought Monitoring with Remote Sensing Based Land Surface Phenology Applications and Validation Book in PDF, Epub and Kindle

Droughts are a recurrent part of our climate, and are still considered to be one of the most complex and least understood of all natural hazards in terms of their impact on the environment. In recent years drought has become more common and more severe across the world. For more than a decade, the US southwest has faced extensive and persistent drought conditions that have impacted vegetation communities and local water resources. The focus of this work is achieving a better understanding of the impact of drought on the lands of the Hopi Tribe and Navajo Nation, situated in the Northeastern corner of Arizona. This research explores the application of remote sensing data and geospatial tools in two studies to monitor drought impacts on vegetation productivity. In both studies we used land surface phenometrics as the data tool. In a third related study, I have compared satellite-derived land surface phenology (LSP) to field observations of crop stages at the Maricopa Agricultural Center to achieve a better understanding of the temporal sensitivity of satellite derived phenology of vegetation and understand their accuracy as a tool for monitoring change. The first study explores long-term vegetation productivity responses to drought. The paper develops a framework for drought monitoring and assessment by integrating land cover, climate, and topographical data with LSP. The objective of the framework is to detect long-term vegetation changes and trends in the Normalized Difference Vegetation Index (NDVI) related productivity. The second study examines the major driving forces of vegetation dynamics in order to provide valuable spatial information related to inter-annual variability in vegetation productivity for mitigating drought impacts. The third study tests the accuracy of remote sensing-derived LSP by comparing them to the actual seasonal phases of crop growth. This provides a way to compare and validate the various LSP algorithms, and more crucially, helps to characterize the remote sensing-based metrics that contrast with the actual biological phenophases of the crops. These studies demonstrate how remote sensing data and simple statistical tools can be used to assess drought effects on vegetation productivity and to inform about land conditions, as well as to better understand the accuracy of satellite derived LSP.