High-Performance Computing Using FPGAs

High-Performance Computing Using FPGAs
Author: Wim Vanderbauwhede
Publisher: Springer Science & Business Media
Total Pages: 798
Release: 2013-08-23
Genre: Technology & Engineering
ISBN: 1461417910

Download High-Performance Computing Using FPGAs Book in PDF, Epub and Kindle

High-Performance Computing using FPGA covers the area of high performance reconfigurable computing (HPRC). This book provides an overview of architectures, tools and applications for High-Performance Reconfigurable Computing (HPRC). FPGAs offer very high I/O bandwidth and fine-grained, custom and flexible parallelism and with the ever-increasing computational needs coupled with the frequency/power wall, the increasing maturity and capabilities of FPGAs, and the advent of multicore processors which has caused the acceptance of parallel computational models. The Part on architectures will introduce different FPGA-based HPC platforms: attached co-processor HPRC architectures such as the CHREC’s Novo-G and EPCC’s Maxwell systems; tightly coupled HRPC architectures, e.g. the Convey hybrid-core computer; reconfigurably networked HPRC architectures, e.g. the QPACE system, and standalone HPRC architectures such as EPFL’s CONFETTI system. The Part on Tools will focus on high-level programming approaches for HPRC, with chapters on C-to-Gate tools (such as Impulse-C, AutoESL, Handel-C, MORA-C++); Graphical tools (MATLAB-Simulink, NI LabVIEW); Domain-specific languages, languages for heterogeneous computing(for example OpenCL, Microsoft’s Kiwi and Alchemy projects). The part on Applications will present case from several application domains where HPRC has been used successfully, such as Bioinformatics and Computational Biology; Financial Computing; Stencil computations; Information retrieval; Lattice QCD; Astrophysics simulations; Weather and climate modeling.

FPGAs and HPC.

FPGAs and HPC.
Author:
Publisher:
Total Pages: 22
Release: 2007
Genre:
ISBN:

Download FPGAs and HPC. Book in PDF, Epub and Kindle

This report addresses the current uses of field programmable gate arrays (FPGAs) and their potential for use in high performance computing (HPC). FPGAs are devices programmed using languages and methodologies originally developed for describing the circuit layouts used in today's integrated circuits. As such, they are well suited for applications involving bit manipulations performed on a continuous stream of data. However, their general applicability to HPC applications is open to debate. This report details many of the issues that determine the applicability of FPGAs to different classes of problems.

FPGAs and HPC

FPGAs and HPC
Author: Daniel M. Pressel
Publisher:
Total Pages: 16
Release: 2007
Genre: Field programmable gate arrays
ISBN:

Download FPGAs and HPC Book in PDF, Epub and Kindle

This report addresses the current uses of field programmable gate arrays (FPGAs) and their potential for use in high performance computing (HPC). FPGAs are devices programmed using languages and methodologies originally developed for describing the circuit layouts used in today's integrated circuits. As such, they are well suited for applications involving bit manipulations performed on a continuous stream of data. However, their general applicability to HPC applications is open to debate. This report details many of the issues that determine the applicability of FPGAs to different classes of problems.

FPGA Frontiers

FPGA Frontiers
Author: Nicole Hemsoth
Publisher: Next Platform Press
Total Pages:
Release: 2017-01-16
Genre:
ISBN: 9780692835463

Download FPGA Frontiers Book in PDF, Epub and Kindle

While field programmable gate arrays (FPGAs) are certainly not new, their time to take the market by force did not fully arrive until 2016, at least for a new wave of applications in research, enterprise, and machine learning. With key acquisitions, highly publicized use cases of FPGAs at scale for real-world applications, and momentum to make programming these devices easier, FPGAs found the limelight-and that story is just beginning. Tracing the progression of FPGA use cases, technology developments, and market trends via the compute infrastructure analysis publication, The Next Platform, authors Nicole Hemsoth and Timothy Prickett Morgan pull together the last year in FPGA developments and offer a synthesized, holistic view of where the industry is heading-and where the new application areas will emerge. From the use of these devices in deep learning and machine learning, high performance computing (HPC), and enterprise applications, the range of FPGA acceleration is growing. In this 2017 edition of the book, readers will see the big picture for FPGAs in terms of past, present, and future and be armed with a sense of direction for new applications and innovations on the device and software sides.

FPGA Algorithms and Applications for the Internet of Things

FPGA Algorithms and Applications for the Internet of Things
Author: Sharma, Preeti
Publisher: IGI Global
Total Pages: 257
Release: 2020-03-30
Genre: Computers
ISBN: 1522598081

Download FPGA Algorithms and Applications for the Internet of Things Book in PDF, Epub and Kindle

In the research area of computer science, practitioners are constantly searching for faster platforms with pertinent results. With analytics that span environmental development to computer hardware emulation, problem-solving algorithms are in high demand. Field-Programmable Gate Array (FPGA) is a promising computing platform that can be significantly faster for some applications and can be applied to a variety of fields. FPGA Algorithms and Applications for the Internet of Things provides emerging research exploring the theoretical and practical aspects of computable algorithms and applications within robotics and electronics development. Featuring coverage on a broad range of topics such as neuroscience, bioinformatics, and artificial intelligence, this book is ideally designed for computer science specialists, researchers, professors, and students seeking current research on cognitive analytics and advanced computing.

Introduction to Reconfigurable Supercomputing

Introduction to Reconfigurable Supercomputing
Author: Marco Lanzagorta
Publisher: Springer Nature
Total Pages: 87
Release: 2022-05-31
Genre: Technology & Engineering
ISBN: 3031017269

Download Introduction to Reconfigurable Supercomputing Book in PDF, Epub and Kindle

This book covers technologies, applications, tools, languages, procedures, advantages, and disadvantages of reconfigurable supercomputing using Field Programmable Gate Arrays (FPGAs). The target audience is the community of users of High Performance Computers (HPC) who may benefit from porting their applications into a reconfigurable environment. As such, this book is intended to guide the HPC user through the many algorithmic considerations, hardware alternatives, usability issues, programming languages, and design tools that need to be understood before embarking on the creation of reconfigurable parallel codes. We hope to show that FPGA acceleration, based on the exploitation of the data parallelism, pipelining and concurrency remains promising in view of the diminishing improvements in traditional processor and system design. Table of Contents: FPGA Technology / Reconfigurable Supercomputing / Algorithmic Considerations / FPGA Programming Languages / Case Study: Sorting / Alternative Technologies and Concluding Remarks

FPGA Based High Performance Computing

FPGA Based High Performance Computing
Author:
Publisher:
Total Pages:
Release: 2008
Genre:
ISBN:

Download FPGA Based High Performance Computing Book in PDF, Epub and Kindle

Current high performance computing (HPC) applications are found in many consumer, industrial and research fields. From web searches to auto crash simulations to weather predictions, these applications require large amounts of power by the compute farms and supercomputers required to run them. The demand for more and faster computation continues to increase along with an even sharper increase in the cost of the power required to operate and cool these installations. The ability of standard processor based systems to address these needs has declined in both speed of computation and in power consumption over the past few years. This paper presents a new method of computation based upon programmable logic as represented by Field Programmable Gate Arrays (FPGAs) that addresses these needs in a manner requiring only minimal changes to the current software design environment.

Performance Evaluation of Vision Algorithms on FPGA

Performance Evaluation of Vision Algorithms on FPGA
Author: Mahendra Gunathilaka Samarawickrama
Publisher: Universal-Publishers
Total Pages: 57
Release: 2010-11
Genre: Computers
ISBN: 1599423731

Download Performance Evaluation of Vision Algorithms on FPGA Book in PDF, Epub and Kindle

The modern FPGAs enable system designers to develop high-performance computing (HPC) applications with a large amount of parallelism. Real-time image processing is such a requirement that demands much more processing power than a conventional processor can deliver. In this research, we implemented software and hardware based architectures on FPGA to achieve real-time image processing. Furthermore, we benchmark and compare our implemented architectures with existing architectures. The operational structures of those systems consist of on-chip processors or custom vision coprocessors implemented in a parallel manner with efficient memory and bus architectures. The performance properties such as the accuracy, throughput and efficiency are measured and presented. According to results, FPGA implementations are faster than the DSP and GPP implementations for algorithms which can exploit a large amount of parallelism. Our image pre-processing architecture is nearly two times faster than the optimized software implementation on an Intel Core 2 Duo GPP. However, because of the higher clock frequency of DSPs/GPPs, the processing speed for sequential computations on on-chip processors in FPGAs is slower than on DSPs/GPPs. These on-chip processors are well suited for multi-processor systems for software level parallelism. Our quad-Microblaze architecture achieved 75-80% performance improvement compared to its single Microblaze counterpart. Moreover, the quad-Microblaze design is faster than the single-powerPC implementation on FPFA. Therefore, multi-processor architecture with customised coprocessors are effective for implementing custom parallel architecture to achieve real time image processing.

FPGAs for Software Programmers

FPGAs for Software Programmers
Author: Dirk Koch
Publisher: Springer
Total Pages: 331
Release: 2016-06-17
Genre: Technology & Engineering
ISBN: 3319264087

Download FPGAs for Software Programmers Book in PDF, Epub and Kindle

This book makes powerful Field Programmable Gate Array (FPGA) and reconfigurable technology accessible to software engineers by covering different state-of-the-art high-level synthesis approaches (e.g., OpenCL and several C-to-gates compilers). It introduces FPGA technology, its programming model, and how various applications can be implemented on FPGAs without going through low-level hardware design phases. Readers will get a realistic sense for problems that are suited for FPGAs and how to implement them from a software designer’s point of view. The authors demonstrate that FPGAs and their programming model reflect the needs of stream processing problems much better than traditional CPU or GPU architectures, making them well-suited for a wide variety of systems, from embedded systems performing sensor processing to large setups for Big Data number crunching. This book serves as an invaluable tool for software designers and FPGA design engineers who are interested in high design productivity through behavioural synthesis, domain-specific compilation, and FPGA overlays. Introduces FPGA technology to software developers by giving an overview of FPGA programming models and design tools, as well as various application examples; Provides a holistic analysis of the topic and enables developers to tackle the architectural needs for Big Data processing with FPGAs; Explains the reasons for the energy efficiency and performance benefits of FPGA processing; Provides a user-oriented approach and a sense for where and how to apply FPGA technology.

High Performance Computing

High Performance Computing
Author: Michèle Weiland
Publisher: Springer Nature
Total Pages: 682
Release: 2019-12-02
Genre: Computers
ISBN: 3030343561

Download High Performance Computing Book in PDF, Epub and Kindle

This book constitutes the refereed post-conference proceedings of 13 workshops held at the 34th International ISC High Performance 2019 Conference, in Frankfurt, Germany, in June 2019: HPC I/O in the Data Center (HPC-IODC), Workshop on Performance & Scalability of Storage Systems (WOPSSS), Workshop on Performance & Scalability of Storage Systems (WOPSSS), 13th Workshop on Virtualization in High-Performance Cloud Computing (VHPC '18), 3rd International Workshop on In Situ Visualization: Introduction and Applications, ExaComm: Fourth International Workshop on Communication Architectures for HPC, Big Data, Deep Learning and Clouds at Extreme Scale, International Workshop on OpenPOWER for HPC (IWOPH18), IXPUG Workshop: Many-core Computing on Intel, Processors: Applications, Performance and Best-Practice Solutions, Workshop on Sustainable Ultrascale Computing Systems, Approximate and Transprecision Computing on Emerging Technologies (ATCET), First Workshop on the Convergence of Large Scale Simulation and Artificial Intelligence, 3rd Workshop for Open Source Supercomputing (OpenSuCo), First Workshop on Interactive High-Performance Computing, Workshop on Performance Portable Programming Models for Accelerators (P^3MA). The 48 full papers included in this volume were carefully reviewed and selected. They cover all aspects of research, development, and application of large-scale, high performance experimental and commercial systems. Topics include HPC computer architecture and hardware; programming models, system software, and applications; solutions for heterogeneity, reliability, power efficiency of systems; virtualization and containerized environments; big data and cloud computing; and artificial intelligence.