Finite Element Analysis of Ultra-high Performance Concrete

Finite Element Analysis of Ultra-high Performance Concrete
Author: Linfeng Chen
Publisher:
Total Pages: 177
Release: 2010
Genre: Concrete beams
ISBN:

Download Finite Element Analysis of Ultra-high Performance Concrete Book in PDF, Epub and Kindle

"Ultra-high performance concrete (UHPC) is an advanced cementitious composite material which has been developed in recent decades. When compared to more conventional cement-based concrete materials, UHPC tends to exhibit superior properties such as increased durability, strength, and long-term stability. This computational investigation focused on modeling the behaviors of existing UHPC structural components including a prestressed UHPC AASHTO Type II girder and a prestressed UHPC 2nd generation pi-girder. Both a concrete smeared cracking model and a concrete damaged plasticity model were tailored to model UHPC within a commercially available finite element analysis package. The concrete damaged plasticity model using three types of tension stiffening definitions can replicate both linear and nonlinear structural responses of both girders reasonably well. A set of UHPC constitutive properties were developed that facilitate the model replication of the local and global responses observed in the series of physical tests. The finite element analysis modeling techniques developed herein are intended to be applicable to other UHPC structural components"--Technical report documentation page.

Mechanical Property Development and Numerical Modeling of Ultra-high Performance Concrete Focused on Isothermal Curing Conditions

Mechanical Property Development and Numerical Modeling of Ultra-high Performance Concrete Focused on Isothermal Curing Conditions
Author: Thomas Allard
Publisher:
Total Pages: 61
Release: 2018
Genre:
ISBN:

Download Mechanical Property Development and Numerical Modeling of Ultra-high Performance Concrete Focused on Isothermal Curing Conditions Book in PDF, Epub and Kindle

Ultra-high performance concrete (UHPC) has progressively gained interest because of its favorable strength and durability properties. Literature shows that curing temperature has a significant effect on the resultant mechanical properties of UHPC, generally resulting in increased compressive strength. However, limited datasets are currently available to ascertain the degree of change related to compressive strength as a function of curing temperature and conditions. This study investigates the effect of isothermal and submerged curing temperature conditions, ranging from 10°C to 90°C, on the compressive strength and elastic modulus development of UHPC and generates a numerical model to capture these effects. The extent and rate of compressive strength development in Cor-Tuf UHPC was found to increase with curing temperature, while only the rate of elastic modulus development increased with curing temperature. The numerical model shows reasonable agreement when compared with the experimental results and was successfully implemented in finite element analysis software.

Tailor Made Concrete Structures

Tailor Made Concrete Structures
Author: Joost C. Walraven
Publisher: CRC Press
Total Pages: 316
Release: 2008-05-01
Genre: Technology & Engineering
ISBN: 1439828415

Download Tailor Made Concrete Structures Book in PDF, Epub and Kindle

In recent years knowledge of concrete and concrete structures has increased, as has its applications. New types of concrete challenged scientists and engineers, and ecological constraints encouraged the implementation of life cycle design of concrete structures, moving the focus more and more to maintenance and uprating of structures. And since bui

Development of Ultra-High Performance Concrete against Blasts

Development of Ultra-High Performance Concrete against Blasts
Author: Chengqing Wu
Publisher: Woodhead Publishing
Total Pages: 424
Release: 2018-03-19
Genre: Technology & Engineering
ISBN: 0081024967

Download Development of Ultra-High Performance Concrete against Blasts Book in PDF, Epub and Kindle

Development of Ultra-High Performance Concrete against Blasts: From Materials to Structures presents a detailed overview of UHPC development and its related applications in an era of rising terrorism around the world. Chapters present case studies on the novel development of the new generation of UHPC with nano additives. Field blast test results on reinforced concrete columns made with UHPC and UHPC filled double-skin tubes columns are also presented and compiled, as is the residual load-carrying capacities of blast-damaged structural members and the exceptional performance of novel UHPC materials that illustrate its potential in protective structural design. As a notable representative, ultra-high performance concrete (UHPC) has now been widely investigated by government agencies and universities. UHPC inherits many positive aspects of ultra-high strength concrete (UHSC) and is equipped with improved ductility as a result of fiber addition. These features make it an ideal construction material for bridge decks, storage halls, thin-wall shell structures, and other infrastructure because of its protective properties against seismic, impact and blast loads. Focuses on the principles behind UHPC production, properties, design and detailing aspects Presents a series of case studies and filed blast tests on columns and slabs Focuses on applications and future developments

Ultra High Performance Concrete

Ultra High Performance Concrete
Author: Ekkehard Fehling
Publisher: kassel university press GmbH
Total Pages: 922
Release: 2008-01-01
Genre: High strength concrete
ISBN: 3899583760

Download Ultra High Performance Concrete Book in PDF, Epub and Kindle

Fibre Reinforced Concrete: Improvements and Innovations

Fibre Reinforced Concrete: Improvements and Innovations
Author: Pedro Serna
Publisher: Springer Nature
Total Pages: 1180
Release: 2020-11-05
Genre: Technology & Engineering
ISBN: 3030584828

Download Fibre Reinforced Concrete: Improvements and Innovations Book in PDF, Epub and Kindle

This volume highlights the latest advances, innovations, and applications in the field of fibre reinforced concrete (FRC) and discusses a diverse range of topics concerning FRC: rheology and early-age properties, mechanical properties, codes and standards, long-term properties, durability, analytical and numerical models, quality control, structural and Industrial applications, smart FRC’s, nanotechnologies related to FRC, textile reinforced concrete, structural design and UHPFRC. The contributions present improved traditional and new ideas that will open novel research directions and foster multidisciplinary collaboration between different specialists. Although the symposium was postponed, the book gathers peer-reviewed papers selected in 2020 for the RILEM-fib International Symposium on Fibre Reinforced Concrete (BEFIB).

Ultra-High Performance Concrete and Nanotechnology in Construction. Proceedings of Hipermat 2012. 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials

Ultra-High Performance Concrete and Nanotechnology in Construction. Proceedings of Hipermat 2012. 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials
Author: Insert Name Here
Publisher: kassel university press GmbH
Total Pages: 1059
Release: 2012-01-01
Genre: Concrete
ISBN: 3862192644

Download Ultra-High Performance Concrete and Nanotechnology in Construction. Proceedings of Hipermat 2012. 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials Book in PDF, Epub and Kindle

Behavior of UHPC Structural Members subjected to Pure Torsion

Behavior of UHPC Structural Members subjected to Pure Torsion
Author: Mohammed Ismail
Publisher: kassel university press GmbH
Total Pages: 287
Release: 2015-01-01
Genre: Torsion
ISBN: 3862199525

Download Behavior of UHPC Structural Members subjected to Pure Torsion Book in PDF, Epub and Kindle

Ultra High Performance Concrete (UHPC) is characterized by a very high compressive strength which may reach more than 200 MPa. The behavior of this material under tension and compression actions has been established to be very brittle in nature. Discontinuous fibers (normally steel fibers) are usually added to the UHPC mix to introduce ductility. In order to investigate the beneficial effects of using fiber reinforced UHPC in structural members subjected to torsion, a series of experimental tests on 17 UHPC beams subjected to pure torsion were carried out. The test beams consisted of plain UHPC beams, UHPC beams reinforced with steel fibers only, UHPC reinforced with steel fibers and different combinations of traditional longitudinal and transverse reinforcement. The plain UHPC beams showed very brittle behavior, whereas the UHPC beams with steel fibers only showed a post cracking ductile behavior. The addition of little steel fiber volume (e.g. 0.5 %) to the plain UHPC beams enhanced the ductility. The enhancement at the ultimate capacity amounts to about 20 %. Meanwhile, the steel fibers with 0.9 % by volume showed much enhanced ductility and a maximum enhancement of the torsional carrying capacity up to 32 %. The addition of moderate steel fiber volume (e.g. 0.9 %) to one type of traditional reinforcement (either longitudinal or transverse) accomplished an effective post cracking torsional carrying mechanism. The steel fibers shows a tendency to replace the missing type of traditional reinforcement, however this should be confirmed by more tests and by using higher steel fiber volumes. A series of experimental tests on fiber reinforced UHPC prisms to investigate the post cracking shear strength and stiffness of the used UHPC mix (e.g. M3Q) was conducted. The results of these tests revealed that this fine grained UHPC mix has a weak post cracking shear behavior. The results of these tests were used later in the Finite Element (F.E) model. An analytical model based on the well known thin-walled tube analogy was developed in order to estimate the torsional carrying capacity of beams under pure torsion having different combinations of steel fibers and traditional reinforcement. The comparison between the test and model results showed very good agreement for all cases. A finite element model based on calibrated small scale tests was developed using ATENA F.E. package to predict the full load-deformation behavior of the test beams. The predictions of the model show very good agreement with the test results.