Financial Engineering with Finite Elements

Financial Engineering with Finite Elements
Author: Jürgen Topper
Publisher: John Wiley & Sons
Total Pages: 398
Release: 2005-04
Genre: Business & Economics
ISBN:

Download Financial Engineering with Finite Elements Book in PDF, Epub and Kindle

The pricing of derivative instruments has always been a highly complex and time-consuming activity. Advances in technology, however, have enabled much quicker and more accurate pricing through mathematical rather than analytical models. In this book, the author bridges the divide between finance and mathematics by applying this proven mathematical technique to the financial markets. Utilising practical examples, the author systematically describes the processes involved in a manner accessible to those without a deep understanding of mathematics. * Explains little understood techniques that will assist in the accurate more speedy pricing of options * Centres on the practical application of these useful techniques * Offers a detailed and comprehensive account of the methods involved and is the first to explore the application of these particular techniques to the financial markets

Financial Engineering with Finite Elements

Financial Engineering with Finite Elements
Author: Juergen Topper
Publisher: John Wiley & Sons
Total Pages: 378
Release: 2005-06-24
Genre: Business & Economics
ISBN: 0470012919

Download Financial Engineering with Finite Elements Book in PDF, Epub and Kindle

The pricing of derivative instruments has always been a highly complex and time-consuming activity. Advances in technology, however, have enabled much quicker and more accurate pricing through mathematical rather than analytical models. In this book, the author bridges the divide between finance and mathematics by applying this proven mathematical technique to the financial markets. Utilising practical examples, the author systematically describes the processes involved in a manner accessible to those without a deep understanding of mathematics. * Explains little understood techniques that will assist in the accurate more speedy pricing of options * Centres on the practical application of these useful techniques * Offers a detailed and comprehensive account of the methods involved and is the first to explore the application of these particular techniques to the financial markets

Finite Difference Methods in Financial Engineering

Finite Difference Methods in Financial Engineering
Author: Daniel J. Duffy
Publisher: John Wiley & Sons
Total Pages: 452
Release: 2013-10-28
Genre: Business & Economics
ISBN: 1118856481

Download Finite Difference Methods in Financial Engineering Book in PDF, Epub and Kindle

The world of quantitative finance (QF) is one of the fastest growing areas of research and its practical applications to derivatives pricing problem. Since the discovery of the famous Black-Scholes equation in the 1970's we have seen a surge in the number of models for a wide range of products such as plain and exotic options, interest rate derivatives, real options and many others. Gone are the days when it was possible to price these derivatives analytically. For most problems we must resort to some kind of approximate method. In this book we employ partial differential equations (PDE) to describe a range of one-factor and multi-factor derivatives products such as plain European and American options, multi-asset options, Asian options, interest rate options and real options. PDE techniques allow us to create a framework for modeling complex and interesting derivatives products. Having defined the PDE problem we then approximate it using the Finite Difference Method (FDM). This method has been used for many application areas such as fluid dynamics, heat transfer, semiconductor simulation and astrophysics, to name just a few. In this book we apply the same techniques to pricing real-life derivative products. We use both traditional (or well-known) methods as well as a number of advanced schemes that are making their way into the QF literature: Crank-Nicolson, exponentially fitted and higher-order schemes for one-factor and multi-factor options Early exercise features and approximation using front-fixing, penalty and variational methods Modelling stochastic volatility models using Splitting methods Critique of ADI and Crank-Nicolson schemes; when they work and when they don't work Modelling jumps using Partial Integro Differential Equations (PIDE) Free and moving boundary value problems in QF Included with the book is a CD containing information on how to set up FDM algorithms, how to map these algorithms to C++ as well as several working programs for one-factor and two-factor models. We also provide source code so that you can customize the applications to suit your own needs.

Handbooks in Operations Research and Management Science: Financial Engineering

Handbooks in Operations Research and Management Science: Financial Engineering
Author: John R. Birge
Publisher: Elsevier
Total Pages: 1026
Release: 2007-11-16
Genre: Business & Economics
ISBN: 9780080553252

Download Handbooks in Operations Research and Management Science: Financial Engineering Book in PDF, Epub and Kindle

The remarkable growth of financial markets over the past decades has been accompanied by an equally remarkable explosion in financial engineering, the interdisciplinary field focusing on applications of mathematical and statistical modeling and computational technology to problems in the financial services industry. The goals of financial engineering research are to develop empirically realistic stochastic models describing dynamics of financial risk variables, such as asset prices, foreign exchange rates, and interest rates, and to develop analytical, computational and statistical methods and tools to implement the models and employ them to design and evaluate financial products and processes to manage risk and to meet financial goals. This handbook describes the latest developments in this rapidly evolving field in the areas of modeling and pricing financial derivatives, building models of interest rates and credit risk, pricing and hedging in incomplete markets, risk management, and portfolio optimization. Leading researchers in each of these areas provide their perspective on the state of the art in terms of analysis, computation, and practical relevance. The authors describe essential results to date, fundamental methods and tools, as well as new views of the existing literature, opportunities, and challenges for future research.

Tools for Computational Finance

Tools for Computational Finance
Author: Rüdiger U. Seydel
Publisher: Springer Science & Business Media
Total Pages: 256
Release: 2013-06-29
Genre: Mathematics
ISBN: 3662225514

Download Tools for Computational Finance Book in PDF, Epub and Kindle

Tools for Computational Finance offers a clear explanation of computational issues arising in financial mathematics. The new third edition is thoroughly revised and significantly extended, including an extensive new section on analytic methods, focused mainly on interpolation approach and quadratic approximation. Other new material is devoted to risk-neutrality, early-exercise curves, multidimensional Black-Scholes models, the integral representation of options and the derivation of the Black-Scholes equation. New figures, more exercises, and expanded background material make this guide a real must-to-have for everyone working in the world of financial engineering.

The Finite Element Method in Mechanical Design

The Finite Element Method in Mechanical Design
Author: Charles E. Knight
Publisher: Brooks/Cole
Total Pages: 344
Release: 1993
Genre: Computers
ISBN:

Download The Finite Element Method in Mechanical Design Book in PDF, Epub and Kindle

* For the first course in Finite Element Methods taken by mechanical, civil, aerospace, and other engineering majors at junior or senior level..* Excellent applicaitons drawn from mechanical/aeronautical engineering..* Provides enough theory for students to work with Finite Element Analysis (FEM) without bogging down in details unrelated to practical engineering problems..* Contains a bound-in disk for students to use with the problems in FEM.

The Finite Element Method

The Finite Element Method
Author: Thomas J. R. Hughes
Publisher: Courier Corporation
Total Pages: 706
Release: 2012-05-23
Genre: Technology & Engineering
ISBN: 0486135020

Download The Finite Element Method Book in PDF, Epub and Kindle

Designed for students without in-depth mathematical training, this text includes a comprehensive presentation and analysis of algorithms of time-dependent phenomena plus beam, plate, and shell theories. Solution guide available upon request.

Structural Analysis with the Finite Element Method. Linear Statics

Structural Analysis with the Finite Element Method. Linear Statics
Author: Eugenio Oñate
Publisher: Springer Science & Business Media
Total Pages: 894
Release: 2013-05-13
Genre: Technology & Engineering
ISBN: 1402087438

Download Structural Analysis with the Finite Element Method. Linear Statics Book in PDF, Epub and Kindle

STRUCTURAL ANALYSIS WITH THE FINITE ELEMENT METHOD Linear Statics Volume 1 : The Basis and Solids Eugenio Oñate The two volumes of this book cover most of the theoretical and computational aspects of the linear static analysis of structures with the Finite Element Method (FEM). The content of the book is based on the lecture notes of a basic course on Structural Analysis with the FEM taught by the author at the Technical University of Catalonia (UPC) in Barcelona, Spain for the last 30 years. Volume1 presents the basis of the FEM for structural analysis and a detailed description of the finite element formulation for axially loaded bars, plane elasticity problems, axisymmetric solids and general three dimensional solids. Each chapter describes the background theory for each structural model considered, details of the finite element formulation and guidelines for the application to structural engineering problems. The book includes a chapter on miscellaneous topics such as treatment of inclined supports, elastic foundations, stress smoothing, error estimation and adaptive mesh refinement techniques, among others. The text concludes with a chapter on the mesh generation and visualization of FEM results. The book will be useful for students approaching the finite element analysis of structures for the first time, as well as for practising engineers interested in the details of the formulation and performance of the different finite elements for practical structural analysis. STRUCTURAL ANALYSIS WITH THE FINITE ELEMENT METHOD Linear Statics Volume 2: Beams, Plates and Shells Eugenio Oñate The two volumes of this book cover most of the theoretical and computational aspects of the linear static analysis of structures with the Finite Element Method (FEM).The content of the book is based on the lecture notes of a basic course on Structural Analysis with the FEM taught by the author at the Technical University of Catalonia (UPC) in Barcelona, Spain for the last 30 years. Volume 2 presents a detailed description of the finite element formulation for analysis of slender and thick beams, thin and thick plates, folded plate structures, axisymmetric shells, general curved shells, prismatic structures and three dimensional beams. Each chapter describes the background theory for each structural model considered, details of the finite element formulation and guidelines for the application to structural engineering problems Emphasis is put on the treatment of structures with layered composite materials. The book will be useful for students approaching the finite element analysis of beam, plate and shell structures for the first time, as well as for practising engineers interested in the details of the formulation and performance of the different finite elements for practical structural analysis.