Fault-Tolerance Techniques for High-Performance Computing

Fault-Tolerance Techniques for High-Performance Computing
Author: Thomas Herault
Publisher: Springer
Total Pages: 325
Release: 2015-07-01
Genre: Computers
ISBN: 3319209434

Download Fault-Tolerance Techniques for High-Performance Computing Book in PDF, Epub and Kindle

This timely text presents a comprehensive overview of fault tolerance techniques for high-performance computing (HPC). The text opens with a detailed introduction to the concepts of checkpoint protocols and scheduling algorithms, prediction, replication, silent error detection and correction, together with some application-specific techniques such as ABFT. Emphasis is placed on analytical performance models. This is then followed by a review of general-purpose techniques, including several checkpoint and rollback recovery protocols. Relevant execution scenarios are also evaluated and compared through quantitative models. Features: provides a survey of resilience methods and performance models; examines the various sources for errors and faults in large-scale systems; reviews the spectrum of techniques that can be applied to design a fault-tolerant MPI; investigates different approaches to replication; discusses the challenge of energy consumption of fault-tolerance methods in extreme-scale systems.

Scalable Techniques for Fault Tolerant High Performance Computing

Scalable Techniques for Fault Tolerant High Performance Computing
Author:
Publisher:
Total Pages: 174
Release: 2006
Genre:
ISBN:

Download Scalable Techniques for Fault Tolerant High Performance Computing Book in PDF, Epub and Kindle

As the number of processors in todayʹs parallel systems continues to grow, the mean-time-to-failure of these systems is becoming significantly shorter than the execution time of many parallel applications. It is increasingly important for large parallel applications to be able to continue to execute in spite of the failure of some components in the system. Todayʹs long running scientific applications typically tolerate failures by checkpoint/restart in which all process states of an application are saved into stable storage periodically. However, as the number of processors in a system increases, the amount of data that need to be saved into stable storage increases linearly. Therefore, the classical checkpoint/restart approach has a potential scalability problem for large parallel systems. In this research, we explore scalable techniques to tolerate a small number of process failures in large scale parallel computing. The goal of this research is to develop scalable fault tolerance techniques to help to make future high performance computing applications self-adaptive and fault survivable. The fundamental challenge in this research is scalability. To approach this challenge, this research (1) extended existing diskless checkpointing techniques to enable them to better scale in large scale high performance computing systems; (2) designed checkpoint-free fault tolerance techniques for linear algebra computations to survive process failures without checkpoint or rollback recovery; (3) developed coding approaches and novel erasure correcting codes to help applications to survive multiple simultaneous process failures. The fault tolerance schemes we introduce in this dissertation are scalable in the sense that the overhead to tolerate a failure of a fixed number of processes does not increase as the number of total processes in a parallel system increases. Two prototype examples have been developed to demonstrate the effectiveness of our techniques. In the first example, we developed a fault survivable conjugate gradient solver that is able to survive multiple simultaneous process failures with negligible overhead. In the second example, we incorporated our checkpoint-free fault tolerance technique into the ScaLAPACK/PBLAS matrix-matrix multiplication code to evaluate the overhead, survivability, and scalability. Theoretical analysis indicates that, to survive a fixed number of process failures, the fault tolerance overhead (without recovery) for matrix-matrix multiplication decreases to zero as the total number of processes (assuming a fixed amount of data per process) increases to infinity. Experimental results demonstrate that the checkpoint-free fault tolerance technique introduces surprisingly low overhead even when the total number of processes used in the application is small.

Transparent Fault Tolerance for Job Healing in HPC Environments

Transparent Fault Tolerance for Job Healing in HPC Environments
Author:
Publisher:
Total Pages:
Release: 2004
Genre:
ISBN:

Download Transparent Fault Tolerance for Job Healing in HPC Environments Book in PDF, Epub and Kindle

As the number of nodes in high-performance computing environments keeps increasing, faults are becoming common place causing losses in intermediate results of HPC jobs. Furthermore, storage systems providing job input data have been shown to consistently rank as the primary source of system failures leading to data unavailability and job resubmissions. This dissertation presents a combination of multiple fault tolerance techniques that realize significant advances in fault resilience of HPC jobs. The efforts encompass two broad areas. First, at the job level, novel, scalable mechanisms are built in support of proactive FT and to significantly enhance reactive FT. The contributions of this dissertation in this area are (1) a transparent job pause mechanism, which allows a job to pause when a process fails and prevents it from having to re-enter the job queue; (2) a proactive fault-tolerant approach that combines process-level live migration with health monitoring to complement reactive with proactive FT and to reduce the number of checkpoints when a majority of the faults can be handled proactively; (3) a novel back migration approach to eliminate load imbalance or bottlenecks caused by migrated tasks; and (4) an incremental checkpointing mechanism, which is combined with full checkpoints to explore the potential of reducing the overhead of checkpointing by performing fewer full checkpoints interspersed with multiple smaller incremental checkpoints. Second, for the job input data, transparent techniques are provided to improve the reliability, availability and performance of HPC I/O systems. In this area, the dissertation contributes (1) a mechanism for offline job input data reconstruction to ensure availability of job input data and to improve center-wide performance at no cost to job owners; (2) an approach to automatic recover job input data at run-time during failures by recovering staged data from an original source; and (3) ÃØâ'ƠÅ"just in timeÃØâ'ƠÂ replicatio.

Advances in Mathematical Methods and High Performance Computing

Advances in Mathematical Methods and High Performance Computing
Author: Vinai K. Singh
Publisher: Springer
Total Pages: 503
Release: 2019-02-14
Genre: Computers
ISBN: 3030024873

Download Advances in Mathematical Methods and High Performance Computing Book in PDF, Epub and Kindle

This special volume of the conference will be of immense use to the researchers and academicians. In this conference, academicians, technocrats and researchers will get an opportunity to interact with eminent persons in the field of Applied Mathematics and Scientific Computing. The topics to be covered in this International Conference are comprehensive and will be adequate for developing and understanding about new developments and emerging trends in this area. High-Performance Computing (HPC) systems have gone through many changes during the past two decades in their architectural design to satisfy the increasingly large-scale scientific computing demand. Accurate, fast, and scalable performance models and simulation tools are essential for evaluating alternative architecture design decisions for the massive-scale computing systems. This conference recounts some of the influential work in modeling and simulation for HPC systems and applications, identifies some of the major challenges, and outlines future research directions which we believe are critical to the HPC modeling and simulation community.

Fault Tolerance for Iterative Methods in High-performance Computing

Fault Tolerance for Iterative Methods in High-performance Computing
Author: Dingwen Tao
Publisher:
Total Pages: 154
Release: 2018
Genre: Cellular automata
ISBN: 9780438429512

Download Fault Tolerance for Iterative Methods in High-performance Computing Book in PDF, Epub and Kindle

Iterative methods are commonly used approaches to solve large, sparse linear systems, which are fundamental operations for many modern scientific simulations. When the large-scale iterative methods are running with a large number of ranks in parallel, they are anticipated to be more susceptible to soft errors in both logic circuits and memory subsystems and fail-stop errors in the entire system, considering large component counts and lower power margins of emerging high-performance computing (HPC) platforms.

High Performance Computing in Science and Engineering

High Performance Computing in Science and Engineering
Author: Tomáš Kozubek
Publisher: Springer Nature
Total Pages: 172
Release: 2021-01-07
Genre: Computers
ISBN: 3030670775

Download High Performance Computing in Science and Engineering Book in PDF, Epub and Kindle

This book constitutes the thoroughly refereed post-conference proceedings of the 4th International Conference on High Performance Computing in Science and Engineering, HPCSE 2019, held in Karolinka, Czech Republic, in May 2019. The 9 papers presented in this volume were carefully reviewed and selected from 13 submissions. The conference provides an international forum for exchanging ideas among researchers involved in scientific and parallel computing, including theory and applications, as well as applied and computational mathematics. The focus of HPCSE 2019 was on models, algorithms, and software tools that facilitate efficient and convenient utilization of modern parallel and distributed computing architectures, as well as on large-scale applications.

Software Fault Tolerance Techniques and Implementation

Software Fault Tolerance Techniques and Implementation
Author: Laura L. Pullum
Publisher: Artech House
Total Pages: 358
Release: 2001
Genre: Computers
ISBN: 1580531377

Download Software Fault Tolerance Techniques and Implementation Book in PDF, Epub and Kindle

Look to this innovative resource for the most-comprehensive coverage of software fault tolerance techniques available in a single volume. It offers you a thorough understanding of the operation of critical software fault tolerance techniques and guides you through their design, operation and performance. You get an in-depth discussion on the advantages and disadvantages of specific techniques, so you can decide which ones are best suited for your work.