2D Metal Carbides and Nitrides (MXenes)

2D Metal Carbides and Nitrides (MXenes)
Author: Babak Anasori
Publisher: Springer Nature
Total Pages: 534
Release: 2019-10-30
Genre: Technology & Engineering
ISBN: 3030190269

Download 2D Metal Carbides and Nitrides (MXenes) Book in PDF, Epub and Kindle

This book describes the rapidly expanding field of two-dimensional (2D) transition metal carbides and nitrides (MXenes). It covers fundamental knowledge on synthesis, structure, and properties of these new materials, and a description of their processing, scale-up and emerging applications. The ways in which the quickly expanding family of MXenes can outperform other novel nanomaterials in a variety of applications, spanning from energy storage and conversion to electronics; from water science to transportation; and in defense and medical applications, are discussed in detail.

Fabrication of Metal–Organic Framework Derived Nanomaterials and Their Electrochemical Applications

Fabrication of Metal–Organic Framework Derived Nanomaterials and Their Electrochemical Applications
Author: Wei Xia
Publisher: Springer
Total Pages: 148
Release: 2018-04-03
Genre: Technology & Engineering
ISBN: 9811068119

Download Fabrication of Metal–Organic Framework Derived Nanomaterials and Their Electrochemical Applications Book in PDF, Epub and Kindle

This thesis systematically introduces readers to a new metal-organic framework approach to fabricating nanostructured materials for electrochemical applications. Based on the metal-organic framework (MOF) approach, it also demonstrates the latest ideas on how to create optimal MOF and MOF-derived nanomaterials for electrochemical reactions under controlled conditions. The thesis offers a valuable resource for researchers who want to understand electrochemical reactions at nanoscale and optimize materials from rational design to achieve enhanced electrochemical performance. It also serves as a useful reference guide to fundamental research on advanced electrochemical energy storage materials and the synthesis of nanostructured materials.

Synthesis and Characterization of Transition Metal Oxide Catalysts for Environmental and Energy Storage Applications

Synthesis and Characterization of Transition Metal Oxide Catalysts for Environmental and Energy Storage Applications
Author: Wenqiao Song
Publisher:
Total Pages:
Release: 2016
Genre: Electronic dissertations
ISBN:

Download Synthesis and Characterization of Transition Metal Oxide Catalysts for Environmental and Energy Storage Applications Book in PDF, Epub and Kindle

Nowadays, environmental concerns and the global energy crisis have become two of our greatest challenges. The main purpose of this dissertation research is to design highly active mesoporous materials that can efficiently catalyze environmental and energy related reactions. Surface properties can be easily tuned by thermal treatment and cation doping, resulting in improved catalytic activities. Synthesis and characterization of the materials, catalytic activities for carbon monoxide oxidation, oxygen reduction and oxygen evolution reactions, and mechanistic studies are covered in this thesis. The first part describes the synthesis of mesoporous cobalt oxides through an inverse micelle route for low temperature carbon monoxide oxidation applications. The prepared material showed much better activity and stability compared with commercial cobalt oxide due to its nanoparticle nature and porous structure. The catalytic performance under both dry and moisture rich conditions were tested. Detailed characterization of the materials suggested that high surface areas and the presence of surface oxygen vacancies were critical for enhanced activities. In real systems, structured catalysts such as monolithic substrates coated with a layer of active material are used instead of powder form catalysts. To evaluate the potential of our catalysts to be used in practical catalytic devices, mesoporous metal oxides (MnOx, Co3O4, CeO2) were coated on cordierite substrate by dip coating and in-situ growth and were used as low temperature diesel oxidation catalysts. The resulting materials showed promising catalytic performance. The effect of particle size, loading amount and Cu doping on the catalytic performance are discussed in detail. In the last part, mesoporous cobalt oxides were used as bifunctional catalysts for oxygen reduction and oxygen evolution reactions. If a catalyst can catalyze both reactions, it will have great potential in the application of rechargeable metal air batteries. Ni and Mn doping were introduced into the cobalt oxide material to increase the conductivity and active site population. The Ni incorporated cobalt oxide exhibited the best activity, which can be considered as a potential substituent for precious metal catalysts (Pt, Ir, Ru). Furthermore, the intrinsic structure-property relationships of the materials were established.

Two Dimensional Transition Metal Dichalcogenides

Two Dimensional Transition Metal Dichalcogenides
Author: Narayanasamy Sabari Arul
Publisher: Springer
Total Pages: 355
Release: 2019-07-30
Genre: Technology & Engineering
ISBN: 9811390452

Download Two Dimensional Transition Metal Dichalcogenides Book in PDF, Epub and Kindle

This book presents advanced synthesis techniques adopted to fabricate two-dimensional (2D) transition metal dichalcogenides (TMDs) materials with its enhanced properties towards their utilization in various applications such as, energy storage devices, photovoltaics, electrocatalysis, electronic devices, photocatalysts, sensing and biomedical applications. It provides detailed coverage on everything from the synthesis and properties to the applications and future prospects of research in 2D TMD nanomaterials.

Design of Functional Layered Oxide Materials Through Understanding Structure-property Relationships

Design of Functional Layered Oxide Materials Through Understanding Structure-property Relationships
Author: Megan Strayer
Publisher:
Total Pages:
Release: 2015
Genre:
ISBN:

Download Design of Functional Layered Oxide Materials Through Understanding Structure-property Relationships Book in PDF, Epub and Kindle

A fundamental understanding of structure-property relationships is imperative in the rational design of new materials for tailored applications. In this dissertation, structure-property relationships are exploited in layered oxides and their composite materials. Recent advances in characterization techniques have allowed for more in-depth investigations into both the atomic level structure and properties of these materials. This dissertation focuses on understanding the structure-property relationships in supported catalytic systems and ferroelectric materials to aid in the rational design of functional materials.In Chapter 2, a correlation between the enthalpy of nanoparticle adsorption to oxide supports and the subsequent growth of these nanoparticles as a function of temperature is investigated. When deposited onto layered niobium oxide and tantalum oxide supports, rhodium hydroxide nanoparticles remain small and evenly dispersed upon heating to 750 oC. Using isothermal titration calorimetry, the bonding enthalpy of rhodium hydroxide nanoparticles to oxide supports is quantified for the first time under the wet synthetic conditions of catalyst preparation. Rh(OH)3 is concluded to have a strong, covalent interaction with the early transition metal oxide supports, and the interfacial bonding is hypothesized to occur through Rh -- O -- Nb bonding. Chapter 3 extends the studies in Chapter 2 to include supported metal, metal oxide, and metal hydroxide nanoparticles in the cobalt, nickel and copper triads. The data confirms a strong correlation between the heats of interaction and stability of the supported nanoparticles. Both experimental data and density functional theory calculations demonstrate that the support and nanoparticle compositions impact the heat of interaction and that the qualitative periodic trends of the metal bonding interaction are independent of the metal oxidation state. A strong bond is shown computationally to arise from the formation of mixed d-states between an adsorbed metal atom and a metal atom in the support.A preliminary investigation into the synthesis and stability of catalytically relevant ligand-free metal nanoparticles is presented in Chapter 4. The nanoparticles are synthesized via base hydrolysis and reduction with methanol. When deposited onto a niobium oxide support, the nanoparticles are thermally stable at temperatures up to 900 oC. The mechanism of platinum nanoparticle formation is still largely unknown, and a synthesis of rhodium and iridium ligand-free nanoparticles is reported.In Chapter 5, the n = 2 Dion Jacobson family A'LaB2O7 (A': Rb, Cs; B: Nb, Ta) is reported as non-centrosymmetric and piezoelectric at room temperature for the first time. This non-centrosymmetry is predicted to arise from two nonpolar oxygen octahedral rotational modes condensing via the hybrid improper ferroelectricity mechanism. Rietveld refinement of synchrotron X-ray diffraction data is unable to confirm an acentric crystal structure as peak splitting is evident, revealing that multiple phases are likely present in these materials.Chapter 6 presents temperature-dependent synchrotron X-ray diffraction and neutron diffraction Rietveld refinement analysis of CsLaNb2O7 to investigate the crystal structure and mechanism of non-centrosymmetry. The crystal structure is found to be in the centrosymmetric P4/mmm phase at 600 K and above. From 550 K to 350 K, the space group is assigned to the non-centrosymmetric Amm2 phase, as SHG signal is steadily increasing over this temperature range. Unfortunately, the 300 K and below crystal structure(s) have yet to be solved. Currently, both single-phase and dual-phase models are being refined in the synchrotron X-ray and neutron diffraction data.

Non-Noble Metal Oxides/Hydroxides on Carbon Substrates for Effective Oxygen Electrocatalysis

Non-Noble Metal Oxides/Hydroxides on Carbon Substrates for Effective Oxygen Electrocatalysis
Author: Tingting Zhao
Publisher:
Total Pages: 0
Release: 2019
Genre:
ISBN:

Download Non-Noble Metal Oxides/Hydroxides on Carbon Substrates for Effective Oxygen Electrocatalysis Book in PDF, Epub and Kindle

Developing cost-effective and durable electrocatalysts for the sluggish oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is at the heart of advancing energy conversion and storage technologies, such as rechargeable metal"â€air batteries. In this thesis, several strategies were investigated for this purpose, with a focus on non-noble transition metal derivatives (Mn, Co, Ni, Fe oxides/hydroxides) and functional carbon substrates (oxidized carbon nanotubes and defective graphene). The enhancement in electrochemical performance was realized by rational design of the hybrid structure. Three series of hybrids were synthesized and analyzed: (1) Manganese cobalt oxide/nitrogen-doped multiwalled carbon nanotubes hybrids were rationally integrated by fine control of surface chemistry and synthesis conditions, including tuning of functional groups at surfaces, the congruent growth of nanocrystals with controllable phases and particle sizes, and ensuring strong coupling across catalyst"â€support interfaces. The hybrid structure exhibits tunable and durable catalytic activities for both ORR and OER, with a lowest overall potential difference of 0.93 V. The long-term electrochemical activities are also sustained by rational design of hybrid structures from the nanoscale. (2) Defect-rich graphene was realized by a two-step treatment (thermal reduction and annealing) to enhance the effectiveness of ORR and OER. The dominant mechanism for the enhancement is the increased density of active sites, which can be controlled by the annealing temperature in relation to the O/C ratio, surface area and pore structure. This defective graphene substrate can reduce the amount of manganese cobalt oxide needed to achieve comparable performance against the commercial standard Pt/C, proving an effective strategy of developing cost-effective oxygen electrocatalysts. (3) Nickel-iron layered double hydroxide on defective graphene was developed for highly efficient oxygen evolution electrocatalysis. The hybrids with annealed graphene as the substrate exhibit more efficient oxygen evolution than the other graphene-based materials studied earlier and in this work, in terms of high current response, low overpotential and Tafel slope. The main reason is due to the extensive defects, high electrical conductivity and hierarchical pore size distribution. The morphology, phase and electronic state of the nickel-iron hydroxides were further tuned by the atomic ratio of Ni and Fe and the synthesis conditions, leading to a much reduced low overpotential of 285 mV and 418 mV to achieve 10 mA cm−2 and 100 mA cm−2, respectively, which is among the best oxygen evolution electrocatalysts. The thesis also reviewed the concurrent progress of this subject area, outlined the perspective of this emerging field and proposed further work.

Lithium Ion Rechargeable Batteries

Lithium Ion Rechargeable Batteries
Author: Kazunori Ozawa
Publisher: John Wiley & Sons
Total Pages: 338
Release: 2012-01-09
Genre: Technology & Engineering
ISBN: 3527644652

Download Lithium Ion Rechargeable Batteries Book in PDF, Epub and Kindle

Starting out with an introduction to the fundamentals of lithium ion batteries, this book begins by describing in detail the new materials for all four major uses as cathodes, anodes, separators, and electrolytes. It then goes on to address such critical issues as self-discharge and passivation effects, highlighting lithium ion diffusion and its profound effect on a battery's power density, life cycle and safety issues. The monograph concludes with a detailed chapter on lithium ion battery use in hybrid electric vehicles. Invaluable reading for materials scientists, electrochemists, physicists, and those working in the automobile and electrotechnical industries, as well as those working in computer hardware and the semiconductor industry.