Fabrication and Characterization of Low-dimensional Structures for Optoelectronic Device Applications

Fabrication and Characterization of Low-dimensional Structures for Optoelectronic Device Applications
Author: Latha Nataraj
Publisher:
Total Pages:
Release: 2011
Genre: Germanium
ISBN: 9781124479811

Download Fabrication and Characterization of Low-dimensional Structures for Optoelectronic Device Applications Book in PDF, Epub and Kindle

Low-dimensional structures can be defined as structures and components with novel and improved physical, chemical, and biological properties that result in new phenomena and processes due to their nanoscale size. This work, discusses the fabrication and characterization of low-dimensional structures such as Germanium-rich islands on Silicon, Germanium nanocrystals, Silicon nanomembranes, and quantum dot and quantum well structures made from III-V compounds, that have applications in on-chip and inter-chip optical interconnects, novel photovoltaic devices, and other optoelectronic devices. Silicon-Germanium quantum dots have been receiving considerable attention lately as a means to achieve high-performance hybrid photonics circuitry within CMOS platforms. Strain in Silicon-Germanium heterostructures has shown increased carrier mobility that leads to better performance. Moderate tensile strains in combination with heavy n-type doping have proven to favor direct band-to-band radiative recombination in Germanium, at optical telecommunication wavelengths. Self-assembled doped Germanium islands on Silicon have shown improved light-emission properties at telecommunication wavelengths with higher activation energies and improved ratio of radiative to non-radiative recombination. It is well known that the Stranski-Krastinov growth mode of these islands by molecular-beam-epitaxy is based on the strain due to the 4.2% lattice mismatch between the Germanium and Silicon atoms. Therefore it is extremely important to understand the strain in these structures and their influence on the optical properties of the islands, using various characterization techniques such as Raman spectroscopy, absorption measurements, photoluminescence spectroscopy, temperature-dependent, excitation-intensity-dependent, and time-resolved photoluminescence and spectroscopy. Band-engineered Germanium nanocrystals are considered to be highly promising for Silicon photonics integration due the near-direct band structure of the material. Germanium is fully-compatible with CMOS and the nanocrystals provide stronger confinement than Silicon nanocrystals due to the higher dielectric constant and larger Bohr-radius. In addition, large Germanium nanocrystals provide efficient emission, at room temperature, in the spectral range suitable for optical telecommunications. Fabrication of free-standing Germanium nanocrystals has been successful using a simple and inexpensive process. Their excellent light-emission properties, simple fabrication, and compatibility with standard microelectronic processes make them highly attractive for Silicon photonics integration and it is essential to understand their structural and optical properties. Raman spectroscopy, high-resolution-transmission-electron-microscopy, excitation-intensity-dependent photoluminescence spectroscopy, and time-resolved photoluminescence spectroscopy are used to gain insight into the structural properties, strain, photo-emission and recombination mechanisms in these structures. Thin, flexible semiconductor nanoscale membranes are superior platforms for high-performance flexible optoelectronic devices and high-efficiency flexible solar cell designs. Existing processes are extremely complicated and expensive. We develop a simple and inexpensive process for the fabrication of Silicon thin films for application in flexible solar cells. The structural properties are studied with techniques such as surface-enhanced Raman spectroscopy. Further characterization of optical properties and strain are being contemplated using x-ray diffraction, photoluminescence spectroscopy, and Raman spectroscopy techniques. In addition, this work will discuss the optical characterization of various III-V materials systems such as Gallium-Arsenide/Gallium-Arsenide-Antimonide and Indium-Gallium-Arsenide/Gallium-Arsenide to study effects of surface passivation using Antimony and delta doping in these structures. These structures are of great interest for lasers and photodetectors in the long wavelength range and novel photovoltaic devices such as intermediate band solar cells. Room temperature photoluminescence spectroscopy and variations such as excitation-intensity dependent and temperature-dependent spectroscopy techniques have been used to determine emission properties and sub-band level occupancies and other structural characteristics such as defect densities and crystal quality.

Low Dimensional Semiconductor Structures

Low Dimensional Semiconductor Structures
Author: Hilmi Ünlü
Publisher: Springer Science & Business Media
Total Pages: 174
Release: 2012-09-12
Genre: Science
ISBN: 364228423X

Download Low Dimensional Semiconductor Structures Book in PDF, Epub and Kindle

Starting with the first transistor in 1949, the world has experienced a technological revolution which has permeated most aspects of modern life, particularly over the last generation. Yet another such revolution looms up before us with the newly developed capability to control matter on the nanometer scale. A truly extraordinary research effort, by scientists, engineers, technologists of all disciplines, in nations large and small throughout the world, is directed and vigorously pressed to develop a full understanding of the properties of matter at the nanoscale and its possible applications, to bring to fruition the promise of nanostructures to introduce a new generation of electronic and optical devices. The physics of low dimensional semiconductor structures, including heterostructures, superlattices, quantum wells, wires and dots is reviewed and their modeling is discussed in detail. The truly exceptional material, Graphene, is reviewed; its functionalization and Van der Waals interactions are included here. Recent research on optical studies of quantum dots and on the physical properties of one-dimensional quantum wires is also reported. Chapters on fabrication of nanowire – based nanogap devices by the dielectrophoretic assembly approach. The broad spectrum of research reported here incorporates chapters on nanoengineering and nanophysics. In its presentation of tutorial chapters as well as advanced research on nanostructures, this book is ideally suited to meet the needs of newcomers to the field as well as experienced researchers interested in viewing colleagues’ recent advances.

Low-Dimensional Nanoelectronic Devices

Low-Dimensional Nanoelectronic Devices
Author: Angsuman Sarkar
Publisher: CRC Press
Total Pages: 377
Release: 2022-10-27
Genre: Science
ISBN: 1000565394

Download Low-Dimensional Nanoelectronic Devices Book in PDF, Epub and Kindle

Providing cutting-edge research on nanoelectronics and photonic devices and its application in future integrated circuits, this state-of-the-art book tackles the challenges of the different detailed theoretical and analytical models of solving the problems of various nanodevices. The volume also explores from different angles the roles of material composition and choice of materials that now play the most critical role in determining outcomes of low-dimensional nanoelectronic devices. The applications of those findings are extremely beneficial for the computing and telecommunication industries. Beginning with a solid theoretical background for every chapter, this volume covers the hottest areas of present-day electronic engineering. The continuous miniaturization of devices, components, and systems requires corresponding cutting-edge theoretical analysis supported by simulated findings before actual fabrication. That purpose is given maximum focus in this volume, which has interdisciplinary appeal, making it a comprehensive technological volume that deals with underlying aspects of physics, materials, structures in nano-regime, and the corresponding end-product in the form of devices.

Progress in Nanoscale and Low-Dimensional Materials and Devices

Progress in Nanoscale and Low-Dimensional Materials and Devices
Author: Hilmi Ünlü
Publisher: Springer Nature
Total Pages: 939
Release: 2022-10-18
Genre: Technology & Engineering
ISBN: 3030934608

Download Progress in Nanoscale and Low-Dimensional Materials and Devices Book in PDF, Epub and Kindle

This book describes most recent progress in the properties, synthesis, characterization, modelling, and applications of nanomaterials and nanodevices. It begins with the review of the modelling of the structural, electronic and optical properties of low dimensional and nanoscale semiconductors, methodology of synthesis, and characterization of quantum dots and nanowires, with special attention towards Dirac materials, whose electrical conduction and sensing properties far exceed those of silicon-based materials, making them strong competitors. The contributed reviews presented in this book touch on broader issues associated with the environment, as well as energy production and storage, while highlighting important achievements in materials pertinent to the fields of biology and medicine, exhibiting an outstanding confluence of basic physical science with vital human endeavor. The subjects treated in this book are attractive to the broader readership of graduate and advanced undergraduate students in physics, chemistry, biology, and medicine, as well as in electrical, chemical, biological, and mechanical engineering. Seasoned researchers and experts from the semiconductor/device industry also greatly benefit from the book’s treatment of cutting-edge application studies.

21st Century Nanoscience – A Handbook

21st Century Nanoscience – A Handbook
Author: Klaus D. Sattler
Publisher: CRC Press
Total Pages: 465
Release: 2020-11-26
Genre: Technology & Engineering
ISBN: 1000702502

Download 21st Century Nanoscience – A Handbook Book in PDF, Epub and Kindle

21st Century Nanoscience - A Handbook: Nanophotonics, Nanoelectronics, and Nanoplasmonics (Volume 6) will be the most comprehensive, up-to-date large reference work for the field of nanoscience. Handbook of Nanophysics by the same editor published in the fall of 2010 and was embraced as the first comprehensive reference to consider both fundamental and applied aspects of nanophysics. This follow-up project has been conceived as a necessary expansion and full update that considers the significant advances made in the field since 2010. It goes well beyond the physics as warranted by recent developments in the field. This sixth volume in a ten-volume set covers nanophotonics, nanoelectronics, and nanoplasmonics. Key Features: Provides the most comprehensive, up-to-date large reference work for the field. Chapters written by international experts in the field. Emphasises presentation and real results and applications. This handbook distinguishes itself from other works by its breadth of coverage, readability and timely topics. The intended readership is very broad, from students and instructors to engineers, physicists, chemists, biologists, biomedical researchers, industry professionals, governmental scientists, and others whose work is impacted by nanotechnology. It will be an indispensable resource in academic, government, and industry libraries worldwide. The fields impacted by nanophysics extend from materials science and engineering to biotechnology, biomedical engineering, medicine, electrical engineering, pharmaceutical science, computer technology, aerospace engineering, mechanical engineering, food science, and beyond.

Low-Dimensional and Nanostructured Materials and Devices

Low-Dimensional and Nanostructured Materials and Devices
Author: Hilmi Ünlü
Publisher: Springer
Total Pages: 688
Release: 2015-12-01
Genre: Science
ISBN: 3319253409

Download Low-Dimensional and Nanostructured Materials and Devices Book in PDF, Epub and Kindle

This book focuses on the fundamental phenomena at nanoscale. It covers synthesis, properties, characterization and computer modelling of nanomaterials, nanotechnologies, bionanotechnology, involving nanodevices. Further topics are imaging, measuring, modeling and manipulating of low dimensional matter at nanoscale. The topics covered in the book are of vital importance in a wide range of modern and emerging technologies employed or to be employed in most industries, communication, healthcare, energy, conservation , biology, medical science, food, environment, and education, and consequently have great impact on our society.

Metal-Chalcogenide Nanocomposites

Metal-Chalcogenide Nanocomposites
Author: Mohammad Ehtisham Khan
Publisher: Elsevier
Total Pages: 283
Release: 2023-12-01
Genre: Technology & Engineering
ISBN: 0443188084

Download Metal-Chalcogenide Nanocomposites Book in PDF, Epub and Kindle

Metal-chalcogenides have exceptional properties and can be used for electronic devices, environmental monitoring, and sensing applications, for energy storage, as electrode materials, in fuel cells, membranes and for photocatalytic degradation of environmental pollutants in the field of waste-water treatment applications. Metal-Chalcogenide Nanocomposites: Fundamentals, Properties, and Industrial Applications focuses on metal chalcogenide nanomaterials for environmental remediation and corrosion applications. The chapters focuses on cost-effective and facile fabrication approaches, their growth mechanisms, optical, electrical, and other important properties and their applications in a broad range of diverse fields such as photocatalysis, photovoltaics, hydrogen production, lithium batteries, energy storage, anticorrosion, and sensor devices. The book will be an important information source for both material scientists and engineers who want to create the next generation of products and devices for energy and environmental applications. Covers fabrication, standard characterization, photocatalytic mechanisms, and environmentally-sustainable fabrication methods Applications covered include environmental, electronics, oil, gas, water treatment, sensing, and many more Includes challenges and future opportunities, which are discussed in detail

JJAP

JJAP
Author:
Publisher:
Total Pages: 798
Release: 2005
Genre: Engineering
ISBN:

Download JJAP Book in PDF, Epub and Kindle

Semiconductors for Optoelectronics

Semiconductors for Optoelectronics
Author: Naci Balkan
Publisher: Springer
Total Pages: 0
Release: 2021-10-12
Genre: Technology & Engineering
ISBN: 9783319449340

Download Semiconductors for Optoelectronics Book in PDF, Epub and Kindle

This book provides in-depth knowledge about the fundamental physical properties of bulk and low dimensional semiconductors (LDS). It also explains their applications to optoelectronic devices. The book incorporates two major themes. The first theme, starts from the fundamental principles governing the classification of solids according to their electronic properties and leads to a detailed analysis of electronic band structure and electronic transport in solids. It then focuses on the electronic transport and optical properties of semiconductor compounds, size quantization and the analysis of abrupt p-n junctions where a full analysis of the fundamental properties of intrinsic and doped semiconductors is given. The second theme is device-oriented. It aims to provide the reader with understanding of the design, fabrication and operation of optoelectronic devices based on novel semiconductor materials, such as high-speed photo detectors, light emitting diodes, multi-mode and single-mode lasers and high efficiency solar cells. The book appeals to researchers and high-level undergraduate students.