Comparison and Oscillation Theory of Linear Differential Equations by C A Swanson

Comparison and Oscillation Theory of Linear Differential Equations by C A Swanson
Author:
Publisher: Elsevier
Total Pages: 239
Release: 2000-04-01
Genre: Mathematics
ISBN: 0080955568

Download Comparison and Oscillation Theory of Linear Differential Equations by C A Swanson Book in PDF, Epub and Kindle

In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; andmethods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory.As a result, the book represents a blend of new methods in general computational analysis,and specific, but also generic, techniques for study of systems theory ant its particularbranches, such as optimal filtering and information compression. - Best operator approximation,- Non-Lagrange interpolation,- Generic Karhunen-Loeve transform- Generalised low-rank matrix approximation- Optimal data compression- Optimal nonlinear filtering

The Asymptotic and Oscillatory Behaviour of Difference and Differential Equations

The Asymptotic and Oscillatory Behaviour of Difference and Differential Equations
Author: Shuhui Wu
Publisher: GRIN Verlag
Total Pages: 193
Release: 2022-03-04
Genre: Mathematics
ISBN: 3346600963

Download The Asymptotic and Oscillatory Behaviour of Difference and Differential Equations Book in PDF, Epub and Kindle

Doctoral Thesis / Dissertation from the year 2009 in the subject Mathematics - Applied Mathematics, London Metropolitan University, language: English, abstract: This thesis deals with the asymptotic and oscillatory behaviour of the solutions of certain differential and difference equations. It mainly consists of three parts. The first part is to study the asymptotic behaviour of certain differential equations. The second part is to look for oscillatory criteria for certain nonlinear neutral differential equations. And the third part is to establish new criteria for a class of nonlinear neutral difference equations of any order with continuous variable and another type of higher even order nonlinear neutral difference equations to be oscillatory. A functional differential equation is a differential equation involving the values of the unknown functions at present, as well as at past or future time. The word “time” here stands for the independent variable. In the thesis, the concept of a functional differential equation is confined to ordinary differential equations, although it suits partial ones as well. Functional differential equations can be classified into four types according to their deviations: retarded, advanced, neutral and mixed. A neutral equation is one in which derivative of functionals of the past history and the present state are involved, but no future states occur in the equation. The order of a differential equation is the order of the highest derivative of the unknown function. A difference equation is a specific type of recurrence relation, which is an equation that defines a sequence recursively: each term of the sequence is defined as a function of the preceding terms. On the other hand, difference equations can be thought of as the discrete analogue of the corresponding differential equations. By analogy with differential equations, difference equations also can be classified into four types: delay, advanced, neutral, and mixed. The order of a difference equation is the difference between the largest and the smallest values of the integer variable explicitly involved in the difference equation.

Non-oscillation Domains of Differential Equations with Two Parameters

Non-oscillation Domains of Differential Equations with Two Parameters
Author: Angelo Bernardo Mingarelli
Publisher:
Total Pages: 130
Release: 1988
Genre: Mathematics
ISBN:

Download Non-oscillation Domains of Differential Equations with Two Parameters Book in PDF, Epub and Kindle

This research monograph is an introduction to single linear differential equations (systems) with two parameters and extensions to difference equations and Stieltjes integral equations. The scope is a study of the values of the parameters for which the equation has one solution(s) having one (finitely many) zeros. The prototype is Hill's equation or Mathieu's equation. For the most part no periodicity assumptions are used and when such are made, more general notions such as almost periodic functions are introduced, extending many classical and introducing many new results. Many of the proofs in the first part are variational thus allowing for natural extensions to more general settings later. The book should be accessible to graduate students and researchers alike and the proofs are, for the most part, self-contained.

New developments in Functional and Fractional Differential Equations and in Lie Symmetry

New developments in Functional and Fractional Differential Equations and in Lie Symmetry
Author: Ioannis P. Stavroulakis
Publisher: MDPI
Total Pages: 156
Release: 2021-09-03
Genre: Science
ISBN: 303651158X

Download New developments in Functional and Fractional Differential Equations and in Lie Symmetry Book in PDF, Epub and Kindle

Delay, difference, functional, fractional, and partial differential equations have many applications in science and engineering. In this Special Issue, 29 experts co-authored 10 papers dealing with these subjects. A summary of the main points of these papers follows: Several oscillation conditions for a first-order linear differential equation with non-monotone delay are established in Oscillation Criteria for First Order Differential Equations with Non-Monotone Delays, whereas a sharp oscillation criterion using the notion of slowly varying functions is established in A Sharp Oscillation Criterion for a Linear Differential Equation with Variable Delay. The approximation of a linear autonomous differential equation with a small delay is considered in Approximation of a Linear Autonomous Differential Equation with Small Delay; the model of infection diseases by Marchuk is studied in Around the Model of Infection Disease: The Cauchy Matrix and Its Properties. Exact solutions to fractional-order Fokker–Planck equations are presented in New Exact Solutions and Conservation Laws to the Fractional-Order Fokker–Planck Equations, and a spectral collocation approach to solving a class of time-fractional stochastic heat equations driven by Brownian motion is constructed in A Collocation Approach for Solving Time-Fractional Stochastic Heat Equation Driven by an Additive Noise. A finite difference approximation method for a space fractional convection-diffusion model with variable coefficients is proposed in Finite Difference Approximation Method for a Space Fractional Convection–Diffusion Equation with Variable Coefficients; existence results for a nonlinear fractional difference equation with delay and impulses are established in On Nonlinear Fractional Difference Equation with Delay and Impulses. A complete Noether symmetry analysis of a generalized coupled Lane–Emden–Klein–Gordon–Fock system with central symmetry is provided in Oscillation Criteria for First Order Differential Equations with Non-Monotone Delays, and new soliton solutions of a fractional Jaulent soliton Miodek system via symmetry analysis are presented in New Soliton Solutions of Fractional Jaulent-Miodek System with Symmetry Analysis.

Quadratic Form Theory and Differential Equations

Quadratic Form Theory and Differential Equations
Author:
Publisher: Elsevier
Total Pages: 251
Release: 1981-03-10
Genre: Mathematics
ISBN: 0080956602

Download Quadratic Form Theory and Differential Equations Book in PDF, Epub and Kindle

In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; andmethods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory.As a result, the book represents a blend of new methods in general computational analysis,and specific, but also generic, techniques for study of systems theory ant its particularbranches, such as optimal filtering and information compression. - Best operator approximation,- Non-Lagrange interpolation,- Generic Karhunen-Loeve transform- Generalised low-rank matrix approximation- Optimal data compression- Optimal nonlinear filtering

Discrete Oscillation Theory

Discrete Oscillation Theory
Author: Ravi P. Agarwal
Publisher: Hindawi Publishing Corporation
Total Pages: 977
Release: 2005
Genre: Difference Equations
ISBN: 9775945194

Download Discrete Oscillation Theory Book in PDF, Epub and Kindle

This book is devoted to a rapidly developing branch of the qualitative theory of difference equations with or without delays. It presents the theory of oscillation of difference equations, exhibiting classical as well as very recent results in that area. While there are several books on difference equations and also on oscillation theory for ordinary differential equations, there is until now no book devoted solely to oscillation theory for difference equations. This book is filling the gap, and it can easily be used as an encyclopedia and reference tool for discrete oscillation theory. In nine chapters, the book covers a wide range of subjects, including oscillation theory for second-order linear difference equations, systems of difference equations, half-linear difference equations, nonlinear difference equations, neutral difference equations, delay difference equations, and differential equations with piecewise constant arguments. This book summarizes almost 300 recent research papers and hence covers all aspects of discrete oscillation theory that have been discussed in recent journal articles. The presented theory is illustrated with 121 examples throughout the book. Each chapter concludes with a section that is devoted to notes and bibliographical and historical remarks. The book is addressed to a wide audience of specialists such as mathematicians, engineers, biologists, and physicists. Besides serving as a reference tool for researchers in difference equations, this book can also be easily used as a textbook for undergraduate or graduate classes. It is written at a level easy to understand for college students who have had courses in calculus.